These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31945871)

  • 1. Feasibility of High-Resolution Electrical Mapping for Characterizing Conduction Blocks Created by Gastric Ablation.
    Aghababaie Z; Chan CA; Paskaranandavadivel N; Beyder A; Farrugia G; Asirvatham S; O'Grady G; Cheng LK; Angeli TR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():170-173. PubMed ID: 31945871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gastric ablation as a novel technique for modulating electrical conduction in the in vivo stomach.
    Aghababaie Z; Paskaranandavadivel N; Amirapu S; Chan CA; Du P; Asirvatham SJ; Farrugia G; Beyder A; O'Grady G; Cheng LK; Angeli-Gordon TR
    Am J Physiol Gastrointest Liver Physiol; 2021 Apr; 320(4):G573-G585. PubMed ID: 33470186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localized bioelectrical conduction block from radiofrequency gastric ablation persists after healing: safety and feasibility in a recovery model.
    Aghababaie Z; O'Grady G; Nisbet LA; Modesto AE; Chan CA; Matthee A; Amirapu S; Beyder A; Farrugia G; Asirvatham SJ; Sands GB; Paskaranandavadivel N; Cheng LK; Angeli-Gordon TR
    Am J Physiol Gastrointest Liver Physiol; 2022 Dec; 323(6):G640-G652. PubMed ID: 36255716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted ablation of gastric pacemaker sites to modulate patterns of bioelectrical slow wave activation and propagation in an anesthetized pig model.
    Aghababaie Z; Cheng LK; Paskaranandavadivel N; Avci R; Chan CA; Matthee A; Amirapu S; Asirvatham SJ; Farrugia G; Beyder A; O'Grady G; Angeli-Gordon TR
    Am J Physiol Gastrointest Liver Physiol; 2022 Apr; 322(4):G431-G445. PubMed ID: 35137624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling.
    Du P; Hameed A; Angeli TR; Lahr C; Abell TL; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2015 Oct; 27(10):1409-22. PubMed ID: 26251163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localized gastric distension disrupts slow-wave entrainment leading to temporary ectopic propagation: a high-resolution electrical mapping study.
    Chan CA; Aghababaie Z; Paskaranandavadivel N; Avci R; Cheng LK; Angeli-Gordon TR
    Am J Physiol Gastrointest Liver Physiol; 2021 Dec; 321(6):G656-G667. PubMed ID: 34612062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.
    Angeli TR; Du P; Paskaranandavadivel N; Sathar S; Hall A; Asirvatham SJ; Farrugia G; Windsor JA; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2017 May; 29(5):. PubMed ID: 28035728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between gastric slow wave frequency, velocity, and extracellular amplitude studied by a joint experimental-theoretical approach.
    Wang TH; Du P; Angeli TR; Paskaranandavadivel N; Erickson JC; Abell TL; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2018 Jan; 30(1):. PubMed ID: 28695661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the efficient inter-electrode distance for high-resolution mapping using a mathematical model of human gastric dysrhythmias.
    Putney J; O'Grady G; Angeli TR; Paskaranandavadivel N; Cheng LK; Erickson JC; Peng Du
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1448-51. PubMed ID: 26736542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping.
    O'Grady G; Angeli TR; Du P; Lahr C; Lammers WJEP; Windsor JA; Abell TL; Farrugia G; Pullan AJ; Cheng LK
    Gastroenterology; 2012 Sep; 143(3):589-598.e3. PubMed ID: 22643349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias.
    O'Grady G; Du P; Paskaranandavadivel N; Angeli TR; Lammers WJ; Asirvatham SJ; Windsor JA; Farrugia G; Pullan AJ; Cheng LK
    Neurogastroenterol Motil; 2012 Jul; 24(7):e299-312. PubMed ID: 22709238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of Interstitial Cells of Cajal and Patterns of Gastric Dysrhythmia in Patients With Chronic Unexplained Nausea and Vomiting.
    Angeli TR; Cheng LK; Du P; Wang TH; Bernard CE; Vannucchi MG; Faussone-Pellegrini MS; Lahr C; Vather R; Windsor JA; Farrugia G; Abell TL; O'Grady G
    Gastroenterology; 2015 Jul; 149(1):56-66.e5. PubMed ID: 25863217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow-wave coupling across a gastroduodenal anastomosis as a mechanism for postsurgical gastric dysfunction: evidence for a "gastrointestinal aberrant pathway".
    Wang TH; Angeli TR; Beban G; Du P; Bianco F; Gibbons SJ; Windsor JA; Cheng LK; O'Grady G
    Am J Physiol Gastrointest Liver Physiol; 2019 Aug; 317(2):G141-G146. PubMed ID: 31169993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of interstitial cells of Cajal loss and aging on slow wave conduction velocity in the human stomach.
    Wang TH; Angeli TR; Ishida S; Du P; Gharibans A; Paskaranandavadivel N; Imai Y; Miyagawa T; Abell TL; Farrugia G; Cheng LK; O'Grady G
    Physiol Rep; 2021 Jan; 8(24):e14659. PubMed ID: 33355992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of Abnormal Gastric Pacemaking After Sleeve Gastrectomy Defined by Laparoscopic High-Resolution Electrical Mapping.
    Berry R; Cheng LK; Du P; Paskaranandavadivel N; Angeli TR; Mayne T; Beban G; O'Grady G
    Obes Surg; 2017 Aug; 27(8):1929-1937. PubMed ID: 28213666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.
    Lammers WJ; Ver Donck L; Stephen B; Smets D; Schuurkes JA
    Am J Physiol Gastrointest Liver Physiol; 2009 Jun; 296(6):G1200-10. PubMed ID: 19359425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A framework for simulating gastric electrical propagation in confocal microscopy derived geometries.
    Krohn B; Sathar S; Rohrle O; Vanderwinden JM; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4215-4218. PubMed ID: 29060827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping.
    O'Grady G; Du P; Cheng LK; Egbuji JU; Lammers WJ; Windsor JA; Pullan AJ
    Am J Physiol Gastrointest Liver Physiol; 2010 Sep; 299(3):G585-92. PubMed ID: 20595620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhomogeneities in the propagation of the slow wave in the stomach.
    Lammers WJ
    Neurogastroenterol Motil; 2015 Oct; 27(10):1349-53. PubMed ID: 26407766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electrifying stomach.
    Koch KL
    Neurogastroenterol Motil; 2011 Sep; 23(9):815-8. PubMed ID: 21838727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.