These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31945884)

  • 1. Combining Electrodermal Activity and Speech Analysis towards a more Accurate Emotion Recognition System.
    Greco A; Marzi C; Lanata A; Scilingo EP; Vanello N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():229-232. PubMed ID: 31945884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Emotion Recognition Based on Multiple Physiological Signals].
    Chen S; Zhang L; Jiang F; Chen W; Miao J; Chen H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Apr; 44(4):283-287. PubMed ID: 32762198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolution Neural Network.
    Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2019; 258():140. PubMed ID: 30942731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple-output support vector machine regression with feature selection for arousal/valence space emotion assessment.
    Torres-Valencia CA; Álvarez MA; Orozco-Gutiérrez AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():970-3. PubMed ID: 25570122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Parametric Classifiers Based Emotion Classification Using Electrodermal Activity and Modified Hjorth Features.
    Veeranki YR; Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2021 May; 281():163-167. PubMed ID: 34042726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosignal-Based Multimodal Emotion Recognition in a Valence-Arousal Affective Framework Applied to Immersive Video Visualization.
    Pinto J; Fred A; da Silva HP
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3577-3583. PubMed ID: 31946651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Analysis of Electrodermal Activity Decomposition Methods in Emotion Detection Using Machine Learning.
    Sriram Kumar P ; Govarthan PK; Ganapathy N; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 May; 302():73-77. PubMed ID: 37203612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic detection of major depressive disorder using electrodermal activity.
    Kim AY; Jang EH; Kim S; Choi KW; Jeon HJ; Yu HY; Byun S
    Sci Rep; 2018 Nov; 8(1):17030. PubMed ID: 30451895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The measurement of electrodermal activity].
    Grapperon J; Pignol AC; Vion-Dury J
    Encephale; 2012 Apr; 38(2):149-55. PubMed ID: 22516273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting Emotions through Electrodermal Activity in Learning Contexts: A Systematic Review.
    Horvers A; Tombeng N; Bosse T; Lazonder AW; Molenaar I
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning Techniques for Arousal Classification from Electrodermal Activity: A Systematic Review.
    Sánchez-Reolid R; López de la Rosa F; Sánchez-Reolid D; López MT; Fernández-Caballero A
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network.
    Ganapathy N; Veeranki YR; Kumar H; Swaminathan R
    J Med Syst; 2021 Mar; 45(4):49. PubMed ID: 33660087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Haptic Stimuli on Affective Reading: a Pilot Study.
    Ghiasi S; Valenza G; Morelli MS; Bianchi M; Scilingo EP; Greco A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4938-4941. PubMed ID: 31946968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-Subject EEG Feature Selection for Emotion Recognition Using Transfer Recursive Feature Elimination.
    Yin Z; Wang Y; Liu L; Zhang W; Zhang J
    Front Neurorobot; 2017; 11():19. PubMed ID: 28443015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature selection for multimodal emotion recognition in the arousal-valence space.
    Torres CA; Orozco ÁA; Álvarez MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4330-3. PubMed ID: 24110691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognizing Emotional States Using Speech Information.
    Papakostas M; Siantikos G; Giannakopoulos T; Spyrou E; Sgouropoulos D
    Adv Exp Med Biol; 2017; 989():155-164. PubMed ID: 28971424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emotion Recognition from Chinese Speech for Smart Affective Services Using a Combination of SVM and DBN.
    Zhu L; Chen L; Zhao D; Zhou J; Zhang W
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28737705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal Electrodermal Activity Segment for Enhanced Emotion Recognition Using Spectrogram-Based Feature Extraction and Machine Learning.
    P SK; Agastinose Ronickom JF
    Int J Neural Syst; 2024 May; 34(5):2450027. PubMed ID: 38511233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress State Classification Based on Deep Neural Network and Electrodermal Activity Modeling.
    Vasile F; Vizziello A; Brondino N; Savazzi P
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Deep-Learning Model for Subject-Independent Human Emotion Recognition Using Electrodermal Activity Sensors.
    Al Machot F; Elmachot A; Ali M; Al Machot E; Kyamakya K
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.