These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31945915)

  • 1. Design optimization of contactless generator for implantable energy harvesting system utilizing electrically-stimulated muscle.
    Mochida T; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():358-363. PubMed ID: 31945915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a contactless energy harvesting system driven by contraction of skeletal muscle for implantable medical devices.
    Mochida T; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4648-4652. PubMed ID: 30441387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.
    Sahara G; Hijikata W; Tomioka K; Shinshi T
    Proc Inst Mech Eng H; 2016 Jun; 230(6):569-78. PubMed ID: 27006422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a resonance generator utilizing incomplete tetanus of skeletal muscle
    Mochida T; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7248-7251. PubMed ID: 34892771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo demonstration of a self-sustaining, implantable, stimulated-muscle-powered piezoelectric generator prototype.
    Lewandowski BE; Kilgore KL; Gustafson KJ
    Ann Biomed Eng; 2009 Nov; 37(11):2390-401. PubMed ID: 19657742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power.
    Lewandowski BE; Kilgore KL; Gustafson KJ
    Ann Biomed Eng; 2007 Apr; 35(4):631-41. PubMed ID: 17295066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology.
    Hinchet R; Yoon HJ; Ryu H; Kim MK; Choi EK; Kim DS; Kim SW
    Science; 2019 Aug; 365(6452):491-494. PubMed ID: 31371614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy harvesting for human wearable and implantable bio-sensors.
    Mitcheson PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3432-6. PubMed ID: 21097254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body motion for powering biomedical devices.
    Romero E; Warrington RO; Neuman MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2752-5. PubMed ID: 19964048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy harvesting from the beating heart by a mass imbalance oscillation generator.
    Zurbuchen A; Pfenniger A; Stahel A; Stoeck CT; Vandenberghe S; Koch VM; Vogel R
    Ann Biomed Eng; 2013 Jan; 41(1):131-41. PubMed ID: 22805983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound-Driven Two-Dimensional Ti
    Lee KH; Zhang YZ; Jiang Q; Kim H; Alkenawi AA; Alshareef HN
    ACS Nano; 2020 Mar; 14(3):3199-3207. PubMed ID: 32078295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a biomechanical energy harvester.
    Li Q; Naing V; Donelan JM
    J Neuroeng Rehabil; 2009 Jun; 6():22. PubMed ID: 19549313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new skeletal muscle linear-pull energy convertor as a power source for prosthetic circulatory support devices [corrected].
    Farrar DJ; Hill JD
    J Heart Lung Transplant; 1992; 11(5):S341-50. PubMed ID: 1420227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy harvesting through arterial wall deformation: design considerations for a magneto-hydrodynamic generator.
    Pfenniger A; Obrist D; Stahel A; Koch VM; Vogel R
    Med Biol Eng Comput; 2013 Jul; 51(7):741-55. PubMed ID: 23430327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an Electrostatic Oral Cavity Generator Driven by Occlusal Force.
    Ichikawa K; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1298-1301. PubMed ID: 31946130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.
    Donelan JM; Li Q; Naing V; Hoffer JA; Weber DJ; Kuo AD
    Science; 2008 Feb; 319(5864):807-10. PubMed ID: 18258914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics.
    Jiang D; Shi B; Ouyang H; Fan Y; Wang ZL; Li Z
    ACS Nano; 2020 Jun; 14(6):6436-6448. PubMed ID: 32459086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Batteryless Cardiac Implantable Electronic Devices-The Swiss Way.
    Zurbuchen A; Haeberlin A; Pfenniger A; Bereuter L; Schaerer J; Jutzi F; Huber C; Fuhrer J; Vogel R
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):78-86. PubMed ID: 27662683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo studies of an implantable energy convertor for skeletal muscle powered cardiac assist.
    Reichenbach SH; Farrar DJ; Diao E; Hill JD
    ASAIO J; 1997; 43(5):M668-72. PubMed ID: 9360130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implantable Energy-Harvesting Devices.
    Shi B; Li Z; Fan Y
    Adv Mater; 2018 Nov; 30(44):e1801511. PubMed ID: 30043422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.