These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31945956)

  • 1. Toward clinically-relevant joint moment estimation during sit to stand: a feasibility study.
    Hwang S; Choi S; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():538-541. PubMed ID: 31945956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Simplified System to Estimate Lower-Limb Joint Moments during Sit-to-Stand.
    Hwang S; Choi S; Lee YS; Kim J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of Inertial Sensor-Based Estimation Methods of Lower Limb Joint Moments and Ground Reaction Force: Results for Squat and Sit-to-Stand Movements in the Sagittal Plane.
    Kodama J; Watanabe T
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27490544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical analysis of the relation between movement time and joint moment development during a sit-to-stand task.
    Yoshioka S; Nagano A; Hay DC; Fukashiro S
    Biomed Eng Online; 2009 Oct; 8():27. PubMed ID: 19849859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements.
    Yoshioka S; Nagano A; Himeno R; Fukashiro S
    Biomed Eng Online; 2007 Jul; 6():26. PubMed ID: 17608922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sit-to-stand at different periods of pregnancy.
    Lou SZ; Chou YL; Chou PH; Lin CJ; Chen UC; Su FC
    Clin Biomech (Bristol, Avon); 2001 Mar; 16(3):194-8. PubMed ID: 11240053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between movement time and hip moment impulse in the sagittal plane during sit-to-stand movement: a combined experimental and computer simulation study.
    Inai T; Takabayashi T; Edama M; Kubo M
    Biomed Eng Online; 2018 Apr; 17(1):48. PubMed ID: 29703194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual joint contributions to the total support moment during the sit-to-stand task differentiate mild and moderate knee osteoarthritis.
    Petrella M; Serrão PRMDS; Selistre LFA; Lessi GC; Gonçalves GH; Mattiello SM
    Clin Biomech (Bristol, Avon); 2019 Dec; 70():52-58. PubMed ID: 31401530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand.
    Kuo MY; Tsai TY; Lin CC; Lu TW; Hsu HC; Shen WC
    Gait Posture; 2011 Mar; 33(3):379-84. PubMed ID: 21227694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lumbar joint torque estimation based on simplified motion measurement using multiple inertial sensors.
    Miyajima S; Tanaka T; Imamura Y; Kusaka T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6716-9. PubMed ID: 26737834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Side difference in the hip and knee joint moments during sit-to-stand and stand-to-sit tasks in individuals with hemiparesis.
    Roy G; Nadeau S; Gravel D; Piotte F; Malouin F; McFadyen BJ
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):795-804. PubMed ID: 17512648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical analysis of sit-to-stand movement in normal and obese subjects.
    Sibella F; Galli M; Romei M; Montesano A; Crivellini M
    Clin Biomech (Bristol, Avon); 2003 Oct; 18(8):745-50. PubMed ID: 12957561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stand-to-sit kinematic changes during pregnancy correspond with reduced sagittal plane hip motion.
    Catena RD; Bailey JP; Campbell N; Music HE
    Clin Biomech (Bristol, Avon); 2019 Jul; 67():107-114. PubMed ID: 31100701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of sit-to-stand in typically developing children aged 4 to 12 years: Movement time, trunk and lower extremity joint angles, and joint moments.
    Mapaisansin P; Suriyaamarit D; Boonyong S
    Gait Posture; 2020 Feb; 76():14-21. PubMed ID: 31707306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the Knee Adduction Moment and Joint Contact Force during Daily Living Activities Using Inertial Motion Capture.
    Konrath JM; Karatsidis A; Schepers HM; Bellusci G; de Zee M; Andersen MS
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30970538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of the lower extremity joint motions on the total body motion in sit-to-stand movement.
    Yu B; Holly-Crichlow N; Brichta P; Reeves GR; Zablotny CM; Nawoczenski DA
    Clin Biomech (Bristol, Avon); 2000 Jul; 15(6):449-55. PubMed ID: 10771124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the assumption of bilateral lower extremity joint moment symmetry during the sit-to-stand task.
    Lundin TM; Grabiner MD; Jahnigen DW
    J Biomech; 1995 Jan; 28(1):109-12. PubMed ID: 7852435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modifying center of mass trajectory during sit-to-stand tasks redistributes the mechanical demand across the lower extremity joints.
    Mathiyakom W; McNitt-Gray JL; Requejo P; Costa K
    Clin Biomech (Bristol, Avon); 2005 Jan; 20(1):105-11. PubMed ID: 15567544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do patients with knee osteoarthritis perform sit-to-stand motion efficiently?
    Anan M; Shinkoda K; Suzuki K; Yagi M; Ibara T; Kito N
    Gait Posture; 2015 Feb; 41(2):488-92. PubMed ID: 25530114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meta-heuristic optimization algorithms based feature selection for joint moment prediction of sit-to-stand movement using machine learning algorithms.
    Ekinci E; Garip Z; Serbest K
    Comput Biol Med; 2024 Aug; 178():108812. PubMed ID: 38943945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.