BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31945964)

  • 1. Rehabilitation Exercise Segmentation for Autonomous Biofeedback Systems with ConvFSM.
    Bevilacqua A; Brennan L; Argent R; Caulfield B; Kechadi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():574-579. PubMed ID: 31945964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rehabilitation exercise assessment using inertial sensors: a cross-sectional analytical study.
    Giggins OM; Sweeney KT; Caulfield B
    J Neuroeng Rehabil; 2014 Nov; 11():158. PubMed ID: 25431092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmentation of shoulder rehabilitation exercises for single and multiple inertial sensor systems.
    Brennan L; Bevilacqua A; Kechadi T; Caulfield B
    J Rehabil Assist Technol Eng; 2020; 7():2055668320915377. PubMed ID: 32913661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on the operation of rehabilitation interfaces in active rehabilitation exercises for upper limb hemiplegic patients: Interfaces for lateral and bilateral exercises.
    Eom SH; Lee EH
    Technol Health Care; 2016 Apr; 24 Suppl 2():S607-23. PubMed ID: 27163324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of different sensory augmentation on weight-shifting balance exercises in Parkinson's disease and healthy elderly people: a proof-of-concept study.
    Lee BC; Thrasher TA; Fisher SP; Layne CS
    J Neuroeng Rehabil; 2015 Sep; 12():75. PubMed ID: 26329918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous modeling of repetitive movement for rehabilitation exercise monitoring.
    Jatesiktat P; Lim GM; Kuah CWK; Anopas D; Ang WT
    BMC Med Inform Decis Mak; 2022 Jul; 22(1):175. PubMed ID: 35780122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verification of a Portable Motion Tracking System for Remote Management of Physical Rehabilitation of the Knee.
    Bell KM; Onyeukwu C; McClincy MP; Allen M; Bechard L; Mukherjee A; Hartman RA; Smith C; Lynch AD; Irrgang JJ
    Sensors (Basel); 2019 Feb; 19(5):. PubMed ID: 30823373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Validation of Vision-Based Exercise Biofeedback for Tele-Rehabilitation.
    Barzegar Khanghah A; Fernie G; Roshan Fekr A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedback Design in Targeted Exercise Digital Biofeedback Systems for Home Rehabilitation: A Scoping Review.
    Brennan L; Dorronzoro Zubiete E; Caulfield B
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Context-Aware Application to Increase Elderly Users Compliance with Physical Rehabilitation Exercises at Home via Animatronic Biofeedback.
    Gamecho B; Silva H; Guerreiro J; Gardeazabal L; Abascal J
    J Med Syst; 2015 Nov; 39(11):135. PubMed ID: 26319272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computerized recognition system for the home-based physiotherapy exercises using an RGBD camera.
    Ar I; Akgul YS
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1160-71. PubMed ID: 24860037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effectiveness of using a hardware complex with biofeedback in the rehabilitation of children with dysfunction of the upper limbs].
    Volovets SA; Badalov NG; Borodulina IV; Yakovlev MY
    Vopr Kurortol Fizioter Lech Fiz Kult; 2022; 99(5):37-47. PubMed ID: 36279375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparison of Approaches for Segmenting the Reaching and Targeting Motion Primitives in Functional Upper Extremity Reaching Tasks.
    Jackson KL; Duric Z; Engdahl SM; Santago AC; Sikdar S; Gerber LH
    IEEE J Transl Eng Health Med; 2024; 12():10-21. PubMed ID: 38059129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities.
    Li C; Rusák Z; Horváth I; Ji L
    Int J Rehabil Res; 2014 Dec; 37(4):334-42. PubMed ID: 25221845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable Sensor-Based Biofeedback Training for Balance and Gait in Parkinson Disease: A Pilot Randomized Controlled Trial.
    Carpinella I; Cattaneo D; Bonora G; Bowman T; Martina L; Montesano A; Ferrarin M
    Arch Phys Med Rehabil; 2017 Apr; 98(4):622-630.e3. PubMed ID: 27965005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an EMG-ACC-Based Upper Limb Rehabilitation Training System.
    Ling Liu ; Xiang Chen ; Zhiyuan Lu ; Shuai Cao ; De Wu ; Xu Zhang
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):244-253. PubMed ID: 28113559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of inertial sensors for the classification of rehabilitation exercises.
    Giggins O; Sweeney KT; Caulfield B
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2965-8. PubMed ID: 25570613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Serious Game for Upper Limb Stroke Rehabilitation Using Biofeedback and Mirror-Neurons Based Training.
    Cargnin DJ; Cordeiro d'Ornellas M; Cervi Prado AL
    Stud Health Technol Inform; 2015; 216():348-52. PubMed ID: 26262069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing automated lower limb rehabilitation exercise task recognition through multi-sensor data fusion in tele-rehabilitation.
    Ettefagh A; Roshan Fekr A
    Biomed Eng Online; 2024 Mar; 23(1):35. PubMed ID: 38504279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.