BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 31945967)

  • 21. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running.
    Matijevich ES; Scott LR; Volgyesi P; Derry KH; Zelik KE
    Hum Mov Sci; 2020 Dec; 74():102690. PubMed ID: 33132194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wearable-Sensor-based Detection and Prediction of Freezing of Gait in Parkinson's Disease: A Review.
    Pardoel S; Kofman J; Nantel J; Lemaire ED
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The detection of age groups by dynamic gait outcomes using machine learning approaches.
    Zhou Y; Romijnders R; Hansen C; Campen JV; Maetzler W; Hortobágyi T; Lamoth CJC
    Sci Rep; 2020 Mar; 10(1):4426. PubMed ID: 32157168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.
    Ostaszewski M; Pauk J
    Technol Health Care; 2018; 26(S2):605-612. PubMed ID: 29843283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ablation Analysis to Select Wearable Sensors for Classifying Standing, Walking, and Running.
    Gonzalez S; Stegall P; Edwards H; Stirling L; Siu HC
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of Plantar Forces During Gait Using Wearable Sensors and Deep Neural Networks
    Nagashima M; Cho SG; Ding M; Garcia Ricardez GA; Takamatsu J; Ogasawara T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3629-3632. PubMed ID: 31946662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using Lower Limb Wearable Sensors to Identify Gait Modalities: A Machine-Learning-Based Approach.
    Hughes LD; Bencsik M; Bisele M; Barnett CT
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Load Position and Weight Classification during Carrying Gait Using Wearable Inertial and Electromyographic Sensors.
    Goršič M; Dai B; Novak D
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hidden Markov Model-Based Smart Annotation for Benchmark Cyclic Activity Recognition Database Using Wearables.
    Martindale CF; Sprager S; Eskofier BM
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30995789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine Learning-Based Unobtrusive Intake Gesture Detection via Wearable Inertial Sensors.
    Al Jlailaty H; Celik A; Mansour MM; Eltawil AM
    IEEE Trans Biomed Eng; 2023 Apr; 70(4):1389-1400. PubMed ID: 36282827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classification of foot drop gait characteristic due to lumbar radiculopathy using machine learning algorithms.
    Sharif Bidabadi S; Murray I; Lee GYF; Morris S; Tan T
    Gait Posture; 2019 Jun; 71():234-240. PubMed ID: 31082655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated detection of gait initiation and termination using wearable sensors.
    Novak D; Reberšek P; De Rossi SM; Donati M; Podobnik J; Beravs T; Lenzi T; Vitiello N; Carrozza MC; Munih M
    Med Eng Phys; 2013 Dec; 35(12):1713-20. PubMed ID: 23938085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking.
    Hu B; Dixon PC; Jacobs JV; Dennerlein JT; Schiffman JM
    J Biomech; 2018 Apr; 71():37-42. PubMed ID: 29452755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. IMU, sEMG, or their cross-correlation and temporal similarities: Which signal features detect lateral compensatory balance reactions more accurately?
    Nouredanesh M; Tung J
    Comput Methods Programs Biomed; 2019 Dec; 182():105003. PubMed ID: 31465977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of Human Gait Phases Using Textile Pressure Sensors: A Low Cost and Pervasive Approach.
    Milovic M; Farías G; Fingerhuth S; Pizarro F; Hermosilla G; Yunge D
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feature selection for elderly faller classification based on wearable sensors.
    Howcroft J; Kofman J; Lemaire ED
    J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.
    Yurtman A; Barshan B
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28792481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine Learning and Wearable Sensors for the Early Detection of Balance Disorders in Parkinson's Disease.
    Castelli Gattinara Di Zubiena F; Menna G; Mileti I; Zampogna A; Asci F; Paoloni M; Suppa A; Del Prete Z; Palermo E
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Promising Wearable Solution for the Practical and Accurate Monitoring of Low Back Loading in Manual Material Handling.
    Matijevich ES; Volgyesi P; Zelik KE
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The application of artificial intelligence and custom algorithms with inertial wearable devices for gait analysis and detection of gait-altering pathologies in adults: A scoping review of literature.
    Lim ACY; Natarajan P; Fonseka RD; Maharaj M; Mobbs RJ
    Digit Health; 2022; 8():20552076221074128. PubMed ID: 35111331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.