BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 31945990)

  • 1. EEG-Based Emotion Recognition with Prototype-Based Data Representation.
    Wang Y; Qiu S; Zhao C; Yang W; Li J; Ma X; He H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():684-689. PubMed ID: 31945990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network.
    Cho J; Hwang H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG-Based Emotion Recognition with Similarity Learning Network.
    Wang Y; Qiu S; Li J; Ma X; Liang Z; Li H; He H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1209-1212. PubMed ID: 31946110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition.
    Chai X; Wang Q; Zhao Y; Liu X; Bai O; Li Y
    Comput Biol Med; 2016 Dec; 79():205-214. PubMed ID: 27810626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG-Based Multi-Modal Emotion Recognition using Bag of Deep Features: An Optimal Feature Selection Approach.
    Asghar MA; Khan MJ; Fawad ; Amin Y; Rizwan M; Rahman M; Badnava S; Mirjavadi SS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning.
    Dar MN; Akram MU; Yuvaraj R; Gul Khawaja S; Murugappan M
    Comput Biol Med; 2022 May; 144():105327. PubMed ID: 35303579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fused CNN-LSTM deep learning emotion recognition model using electroencephalography signals.
    Ramzan M; Dawn S
    Int J Neurosci; 2023 Jun; 133(6):587-597. PubMed ID: 34121598
    [No Abstract]   [Full Text] [Related]  

  • 8. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution.
    Alazrai R; Homoud R; Alwanni H; Daoud MI
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating EEG-based functional connectivity patterns for multimodal emotion recognition.
    Wu X; Zheng WL; Li Z; Lu BL
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 35094982
    [No Abstract]   [Full Text] [Related]  

  • 10. Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition.
    Cimtay Y; Ekmekcioglu E
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition.
    Chai X; Wang Q; Zhao Y; Li Y; Liu D; Liu X; Bai O
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28467371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Scale Frequency Bands Ensemble Learning for EEG-Based Emotion Recognition.
    Shen F; Peng Y; Kong W; Dai G
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition.
    Xing M; Hu S; Wei B; Lv Z
    J Neurosci Methods; 2022 Jul; 376():109624. PubMed ID: 35588948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emotional Stress State Detection Using Genetic Algorithm-Based Feature Selection on EEG Signals.
    Shon D; Im K; Park JH; Lim DS; Jang B; Kim JM
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30400575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AutoEER: automatic EEG-based emotion recognition with neural architecture search.
    Wu Y; Liu H; Zhang D; Zhang Y; Lou T; Zheng Q
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37536317
    [No Abstract]   [Full Text] [Related]  

  • 16. Improving the accuracy of EEG emotion recognition by combining valence lateralization and ensemble learning with tuning parameters.
    Pane ES; Wibawa AD; Purnomo MH
    Cogn Process; 2019 Nov; 20(4):405-417. PubMed ID: 31338704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing BCI-Based Emotion Recognition Using an Improved Particle Swarm Optimization for Feature Selection.
    Li Z; Qiu L; Li R; He Z; Xiao J; Liang Y; Wang F; Pan J
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network.
    Liu Y; Ding Y; Li C; Cheng J; Song R; Wan F; Chen X
    Comput Biol Med; 2020 Aug; 123():103927. PubMed ID: 32768036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the accuracy of electroencephalogram-based emotion recognition through Long Short-Term Memory recurrent deep neural networks.
    Yousefi MR; Dehghani A; Taghaavifar H
    Front Hum Neurosci; 2023; 17():1174104. PubMed ID: 37881690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instance-representation transfer method based on joint distribution and deep adaptation for EEG emotion recognition.
    Zhu L; Yu F; Huang A; Ying N; Zhang J
    Med Biol Eng Comput; 2024 Feb; 62(2):479-493. PubMed ID: 37914959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.