BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31946056)

  • 1. Fully Automatic White Matter Hyperintensity Segmentation using U-net and Skip Connection.
    Zhang Y; Wu J; Chen W; Liu Y; Lyu J; Shi H; Chen Y; Wu EX; Tang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():974-977. PubMed ID: 31946056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-step deep neural network for segmentation of deep white matter hyperintensities in migraineurs.
    Hong J; Park BY; Lee MJ; Chung CS; Cha J; Park H
    Comput Methods Programs Biomed; 2020 Jan; 183():105065. PubMed ID: 31522090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain Atlas Guided Attention U-Net for White Matter Hyperintensity Segmentation.
    Zhang Z; Powell K; Yin C; Cao S; Gonzalez D; Hannawi Y; Zhang P
    AMIA Jt Summits Transl Sci Proc; 2021; 2021():663-671. PubMed ID: 34457182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Tissue Classification and Lateral Ventricle Segmentation via a 2D U-net Driven by a 3D Fully Convolutional Neural Network.
    Wu J; Zhang Y; Tang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5928-5931. PubMed ID: 31947198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images.
    Li H; Jiang G; Zhang J; Wang R; Wang Z; Zheng WS; Menze B
    Neuroimage; 2018 Dec; 183():650-665. PubMed ID: 30125711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator.
    Wang R; Li C; Wang J; Wei X; Li Y; Hui C; Zhu Y; Zhang S
    Acad Radiol; 2014 Dec; 21(12):1512-23. PubMed ID: 25176451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. U-net combined with CRF and anatomical based spatial features to segment white matter hyperintensities.
    Zhou P; Liang L; Guo X; Lv H; Wang T; Ma T
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1754-1757. PubMed ID: 33018337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance improvement of weakly supervised fully convolutional networks by skip connections for brain structure segmentation.
    Sugino T; Roth HR; Oda M; Kin T; Saito N; Nakajima Y; Mori K
    Med Phys; 2021 Nov; 48(11):7215-7227. PubMed ID: 34453333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence for volumetric measurement of cerebral white matter hyperintensities on thick-slice fluid-attenuated inversion recovery (FLAIR) magnetic resonance images from multiple centers.
    Kuwabara M; Ikawa F; Nakazawa S; Koshino S; Ishii D; Kondo H; Hara T; Maeda Y; Sato R; Kaneko T; Maeyama S; Shimahara Y; Horie N
    Sci Rep; 2024 May; 14(1):10104. PubMed ID: 38698152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features.
    Rincón M; Díaz-López E; Selnes P; Vegge K; Altmann M; Fladby T; Bjørnerud A
    Neuroinformatics; 2017 Jul; 15(3):231-245. PubMed ID: 28378263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Stacked Generalization of 3D Orthogonal Deep Learning Convolutional Neural Networks for Improved Detection of White Matter Hyperintensities in 3D FLAIR Images.
    Umapathy L; Perez-Carrillo GG; Keerthivasan MB; Rosado-Toro JA; Altbach MI; Winegar B; Weinkauf C; Bilgin A;
    AJNR Am J Neuroradiol; 2021 Apr; 42(4):639-647. PubMed ID: 33574101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of domain adaptation techniques for white matter hyperintensity segmentation in brain MR images.
    Sundaresan V; Zamboni G; Dinsdale NK; Rothwell PM; Griffanti L; Jenkinson M
    Med Image Anal; 2021 Dec; 74():102215. PubMed ID: 34454295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SegAE: Unsupervised white matter lesion segmentation from brain MRIs using a CNN autoencoder.
    Atlason HE; Love A; Sigurdsson S; Gudnason V; Ellingsen LM
    Neuroimage Clin; 2019; 24():102085. PubMed ID: 31835288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology.
    Rachmadi MF; Valdés-Hernández MDC; Agan MLF; Di Perri C; Komura T;
    Comput Med Imaging Graph; 2018 Jun; 66():28-43. PubMed ID: 29523002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voxel-Wise Logistic Regression and Leave-One-Source-Out Cross Validation for white matter hyperintensity segmentation.
    Knight J; Taylor GW; Khademi A
    Magn Reson Imaging; 2018 Dec; 54():119-136. PubMed ID: 29932970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MHSU-Net: A more versatile neural network for medical image segmentation.
    Ma H; Zou Y; Liu PX
    Comput Methods Programs Biomed; 2021 Sep; 208():106230. PubMed ID: 34148011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Bayesian networks for uncertainty estimation and adversarial resistance of white matter hyperintensity segmentation.
    Mojiri Forooshani P; Biparva M; Ntiri EE; Ramirez J; Boone L; Holmes MF; Adamo S; Gao F; Ozzoude M; Scott CJM; Dowlatshahi D; Lawrence-Dewar JM; Kwan D; Lang AE; Marcotte K; Leonard C; Rochon E; Heyn C; Bartha R; Strother S; Tardif JC; Symons S; Masellis M; Swartz RH; Moody A; Black SE; Goubran M
    Hum Brain Mapp; 2022 May; 43(7):2089-2108. PubMed ID: 35088930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully automatic segmentation on prostate MR images based on cascaded fully convolution network.
    Zhu Y; Wei R; Gao G; Ding L; Zhang X; Wang X; Zhang J
    J Magn Reson Imaging; 2019 Apr; 49(4):1149-1156. PubMed ID: 30350434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images.
    Jain S; Sima DM; Ribbens A; Cambron M; Maertens A; Van Hecke W; De Mey J; Barkhof F; Steenwijk MD; Daams M; Maes F; Van Huffel S; Vrenken H; Smeets D
    Neuroimage Clin; 2015; 8():367-75. PubMed ID: 26106562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.