These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 31946102)
1. Computational Evaluation of Suspended Microcantilever and Microfluidic Channel. Gavalas I; Fotiadis DI Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1171-1174. PubMed ID: 31946102 [TBL] [Abstract][Full Text] [Related]
2. Optimization of Newtonian fluid pressure in microcantilever integrated flexible microfluidic channel for healthcare application. Saxena A; Kumar M; Mishra D; Singh K Biomed Phys Eng Express; 2024 Mar; 10(3):. PubMed ID: 38452735 [TBL] [Abstract][Full Text] [Related]
3. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system. Mehri R; Mavriplis C; Fenech M PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907 [TBL] [Abstract][Full Text] [Related]
4. A micropillar-based microfluidic viscometer for Newtonian and non-Newtonian fluids. Mustafa A; Eser A; Aksu AC; Kiraz A; Tanyeri M; Erten A; Yalcin O Anal Chim Acta; 2020 Oct; 1135():107-115. PubMed ID: 33070846 [TBL] [Abstract][Full Text] [Related]
5. Computational fluid dynamics based Taguchi analysis on shear stress in microfluidic cerebrovascular channels. Garud KS; Jeong S; Lee MY Int J Numer Method Biomed Eng; 2023 Jul; 39(7):e3733. PubMed ID: 37221673 [TBL] [Abstract][Full Text] [Related]
6. A highly accurate and consistent microfluidic viscometer for continuous blood viscosity measurement. Kang YJ; Yoon SY; Lee KH; Yang S Artif Organs; 2010 Nov; 34(11):944-9. PubMed ID: 20946281 [TBL] [Abstract][Full Text] [Related]
7. Optimizing Sensitivity in a Fluid-Structure Interaction-Based Microfluidic Viscometer: A Multiphysics Simulation Study. Mustafa A; Ertas Uslu M; Tanyeri M Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005651 [TBL] [Abstract][Full Text] [Related]
8. Blood's critical Taylor number and its flow behavior at supercritical Taylor numbers. McMillan DE; Strigberger J; Utterback NG Biorheology; 1987; 24(4):401-10. PubMed ID: 3663898 [TBL] [Abstract][Full Text] [Related]
9. 3D-Printed Capillary Circuits for Calibration-Free Viscosity Measurement of Newtonian and Non-Newtonian Fluids. Oh S; Choi S Micromachines (Basel); 2018 Jun; 9(7):. PubMed ID: 30424247 [TBL] [Abstract][Full Text] [Related]
11. A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates. Lee J; Chou TC; Kang D; Kang H; Chen J; Baek KI; Wang W; Ding Y; Carlo DD; Tai YC; Hsiai TK Sci Rep; 2017 May; 7(1):1980. PubMed ID: 28512313 [TBL] [Abstract][Full Text] [Related]
12. Hydrodynamic characteristics of a membrane oxygenator: modeling of pressure-flow characteristics and their influence on apparent viscosity. Okahara S; Tsuji T; Ninomiya S; Miyamoto S; Takahashi H; Soh Z; Sueda T Perfusion; 2015 Sep; 30(6):478-83. PubMed ID: 25467939 [TBL] [Abstract][Full Text] [Related]
13. Microcantilever: Dynamical Response for Mass Sensing and Fluid Characterization. Mouro J; Pinto R; Paoletti P; Tiribilli B Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375431 [TBL] [Abstract][Full Text] [Related]
14. Photothermal Self-Excitation of a Phase-Controlled Microcantilever for Viscosity or Viscoelasticity Sensing. Mouro J; Paoletti P; Sartore M; Vassalli M; Tiribilli B Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366122 [TBL] [Abstract][Full Text] [Related]
15. Transient deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS) microfluidics. Anderson RR; Hu W; Noh JW; Dahlquist WC; Ness SJ; Gustafson TM; Richards DC; Kim S; Mazzeo BA; Woolley AT; Nordin GP Lab Chip; 2011 Jun; 11(12):2088-96. PubMed ID: 21547316 [TBL] [Abstract][Full Text] [Related]
16. Experimental Study of Bubble Formation from a Micro-Tube in Non-Newtonian Fluid. Kontaxi G; Stergiou YG; Mouza AA Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33440872 [TBL] [Abstract][Full Text] [Related]
17. The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow. Box FM; van der Geest RJ; Rutten MC; Reiber JH Invest Radiol; 2005 May; 40(5):277-94. PubMed ID: 15829825 [TBL] [Abstract][Full Text] [Related]
18. Theory of non-Newtonian viscosity of red blood cell suspension: effect of red cell deformation. Murata T Biorheology; 1983; 20(5):471-83. PubMed ID: 6677273 [TBL] [Abstract][Full Text] [Related]
19. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile. Stoltz JF; Donner M Schweiz Med Wochenschr Suppl; 1991; 43():41-9. PubMed ID: 1843037 [TBL] [Abstract][Full Text] [Related]
20. Blood viscosity monitoring during cardiopulmonary bypass based on pressure-flow characteristics of a Newtonian fluid. Okahara S; Zu Soh ; Takahashi S; Sueda T; Tsuji T Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2331-2334. PubMed ID: 28268793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]