These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31946107)

  • 1. Application of Signed Distance Function Neural Network in Real-Time Feet Tracking.
    Foo MJ; Tiseo C; Ang WT
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1191-1196. PubMed ID: 31946107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Foot Tracking and Gait Evaluation with Geometric Modeling.
    Foo MJ; Chang JS; Ang WT
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors.
    Jiang X; Gholami M; Khoshnam M; Eng JJ; Menon C
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personal Identification Using Gait Spectrograms and Deep Convolutional Neural Networks.
    Jung D; Nguyen MD; Arshad MZ; Kim J; Mun KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6899-6904. PubMed ID: 34892691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Plantar Forces During Gait Using Wearable Sensors and Deep Neural Networks
    Nagashima M; Cho SG; Ding M; Garcia Ricardez GA; Takamatsu J; Ogasawara T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3629-3632. PubMed ID: 31946662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep neural network approach for estimating the three-dimensional human center of mass using joint angles.
    Chebel E; Tunc B
    J Biomech; 2021 Sep; 126():110648. PubMed ID: 34333241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying deep neural networks and inertial measurement unit in recognizing irregular walking differences in the real world.
    Hu B; Li S; Chen Y; Kavi R; Coppola S
    Appl Ergon; 2021 Oct; 96():103414. PubMed ID: 34087702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Life Measurement of Tri-Axial Walking Ground Reaction Forces Using Optimal Network of Wearable Inertial Measurement Units.
    Shahabpoor E; Pavic A; Brownjohn JMW; Billings SA; Guo LZ; Bocian M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1243-1253. PubMed ID: 29877849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. American society of biomechanics early career achievement award 2020: Toward portable and modular biomechanics labs: How video and IMU fusion will change gait analysis.
    Halilaj E; Shin S; Rapp E; Xiang D
    J Biomech; 2021 Dec; 129():110650. PubMed ID: 34644610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic neural network approach to targeted balance assessment of individuals with and without neurological disease during non-steady-state locomotion.
    Pickle NT; Shearin SM; Fey NP
    J Neuroeng Rehabil; 2019 Jul; 16(1):88. PubMed ID: 31300001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast Wearable Sensor-Based Foot-Ground Contact Phase Classification Using a Convolutional Neural Network with Sliding-Window Label Overlapping.
    Jeon H; Kim SL; Kim S; Lee D
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32899247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FreeWalker: a smart insole for longitudinal gait analysis.
    Wang B; Rajput KS; Tam WK; Tung AK; Yang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3723-6. PubMed ID: 26737102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Neural Network-Based Gait Classification Using Wearable Inertial Sensor Data.
    Jung D; Nguyen MD; Han J; Park M; Lee K; Yoo S; Kim J; Mun KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3624-3628. PubMed ID: 31946661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individualized Gait Generation for Rehabilitation Robots Based on Recurrent Neural Networks.
    Zhou Z; Liang B; Huang G; Liu B; Nong J; Xie L
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():273-281. PubMed ID: 33332274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Subject-Specific Foot-Ground Contact Model for Walking.
    Jackson JN; Hass CJ; Fregly BJ
    J Biomech Eng; 2016 Sep; 138(9):0910021-09100212. PubMed ID: 27379886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual Elimination Algorithm Enhancements to Improve Foot Motion Tracking During Forward Dynamic Simulations of Gait.
    Jackson JN; Hass CJ; Fregly BJ
    J Biomech Eng; 2015 Nov; 137(11):111002. PubMed ID: 26299394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online tracking of the lower body joint angles using IMUs for gait rehabilitation.
    Joukov V; Karg M; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobile platform for motion capture of locomotion over long distances.
    Ojeda L; Rebula JR; Adamczyk PG; Kuo AD
    J Biomech; 2013 Sep; 46(13):2316-9. PubMed ID: 23876713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalizability of deep learning models for predicting outdoor irregular walking surfaces.
    Shah V; Flood MW; Grimm B; Dixon PC
    J Biomech; 2022 Jun; 139():111159. PubMed ID: 35653898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.