BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31946117)

  • 1. Hierarchical classification scheme for real-time recognition of physical activities and postural transitions using smartphone inertial sensors.
    Walid Talha SA; Fleury A; Lecoeuche S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1243-1246. PubMed ID: 31946117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors.
    Ku Abd Rahim KN; Elamvazuthi I; Izhar LI; Capi G
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview.
    Sousa Lima W; Souto E; El-Khatib K; Jalali R; Gama J
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Behavior Recognition Model Based on Feature and Classifier Selection.
    Gao G; Li Z; Huan Z; Chen Y; Liang J; Zhou B; Dong C
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comparative Study of Feature Selection Approaches for Human Activity Recognition Using Multimodal Sensory Data.
    Amjad F; Khan MH; Nisar MA; Farid MS; Grzegorzek M
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smartphone-Based Human Sitting Behaviors Recognition Using Inertial Sensor.
    Sinha VK; Patro KK; Pławiak P; Prakash AJ
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MBOSS: A Symbolic Representation of Human Activity Recognition Using Mobile Sensors.
    Montero Quispe KG; Sousa Lima W; Macêdo Batista D; Souto E
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory.
    Bragança H; Colonna JG; Lima WS; Souto E
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Robust Feature Extraction Model for Human Activity Characterization Using 3-Axis Accelerometer and Gyroscope Data.
    Ahmed Bhuiyan R; Ahmed N; Amiruzzaman M; Islam MR
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33297389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time Human Physical Activity Recognition with Low Latency Prediction Feedback Using Raw IMU Data.
    Mascret Q; Bielmann M; Fall CL; Bouyer LJ; Gosselin B
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():239-242. PubMed ID: 30440382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. REAL-Time Smartphone Activity Classification Using Inertial Sensors-Recognition of Scrolling, Typing, and Watching Videos While Sitting or Walking.
    Zhuo S; Sherlock L; Dobbie G; Koh YS; Russello G; Lottridge D
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SUPAR: Smartphone as a ubiquitous physical activity recognizer for u-healthcare services.
    Fahim M; Lee S; Yoon Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3666-9. PubMed ID: 25570786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. INIM: Inertial Images Construction with Applications to Activity Recognition.
    Daniel N; Klein I
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Walking Recognition in Mobile Devices.
    Casado FE; Rodríguez G; Iglesias R; Regueiro CV; Barro S; Canedo-Rodríguez A
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical Human Activity Recognition Using Wearable Sensors.
    Attal F; Mohammed S; Dedabrishvili M; Chamroukhi F; Oukhellou L; Amirat Y
    Sensors (Basel); 2015 Dec; 15(12):31314-38. PubMed ID: 26690450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Annotation for Human Activity Recognition in Free Living Using a Smartphone.
    Cruciani F; Cleland I; Nugent C; McCullagh P; Synnes K; Hallberg J
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29987218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smartphone Based Human Activity Recognition with Feature Selection and Dense Neural Network.
    Bashar SK; Al Fahim A; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5888-5891. PubMed ID: 33019314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance Analysis of Boosting Classifiers in Recognizing Activities of Daily Living.
    Rahman S; Irfan M; Raza M; Moyeezullah Ghori K; Yaqoob S; Awais M
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32046302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognizing the intensity of strength training exercises with wearable sensors.
    Pernek I; Kurillo G; Stiglic G; Bajcsy R
    J Biomed Inform; 2015 Dec; 58():145-155. PubMed ID: 26453822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.