These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31946129)

  • 1. Wireless Sensor Platform for Detection of Vital Parameters of Bats.
    Duda N; Ripperger S; Tschapka M; Mayer F; Weigel R; Koelpin A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1294-1297. PubMed ID: 31946129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BATS: Adaptive Ultra Low Power Sensor Network for Animal Tracking.
    Duda N; Nowak T; Hartmann M; Schadhauser M; Cassens B; Wägemann P; Nabeel M; Ripperger S; Herbst S; Meyer-Wegener K; Mayer F; Dressler F; Schröder-Preikschat W; Kapitza R; Robert J; Thielecke J; Weigel R; Kölpin A
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30301239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circulatory flow pattern in the bat's wing.
    WEBB RL; NICOLL PA
    Anat Rec; 1947 Mar; 97(3):431. PubMed ID: 20290948
    [No Abstract]   [Full Text] [Related]  

  • 4. Flutter sensitivity in FM bats. Part II: amplitude modulation.
    Baier AL; Stelzer KJ; Wiegrebe L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Nov; 204(11):941-951. PubMed ID: 30242470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bat wing air pressures may deflect prey structures to provide echo cues for detecting prey in clutter.
    Kuc R; Kuc V
    J Acoust Soc Am; 2012 Sep; 132(3):1776-9. PubMed ID: 22978904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the spontaneous contractions of the initial lymphatics of the bat's wing by arterial and venous occlusion.
    Unthank JL; Hogan RD
    Blood Vessels; 1988; 25(3):115-21. PubMed ID: 3359051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absorption of visible spectrum radiation by the wing membranes of living pteropodid bats.
    Thomson SC; Speakman JR
    J Comp Physiol B; 1999 Apr; 169(3):187-94. PubMed ID: 10335616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive sonar call timing supports target tracking in echolocating bats.
    Kothari NB; Wohlgemuth MJ; Moss CF
    J Exp Biol; 2018 Sep; 221(Pt 18):. PubMed ID: 29997156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless patch sensor for remote monitoring of heart rate, respiration, activity, and falls.
    Chan AM; Selvaraj N; Ferdosi N; Narasimhan R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6115-8. PubMed ID: 24111135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bat flight with bad wings: is flight metabolism affected by damaged wings?
    Voigt CC
    J Exp Biol; 2013 Apr; 216(Pt 8):1516-21. PubMed ID: 23348945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of lymphatic vessels of the bat's wing.
    Cliff WJ; Nicoll PA
    Q J Exp Physiol Cogn Med Sci; 1970 Apr; 55(2):112-31. PubMed ID: 5198732
    [No Abstract]   [Full Text] [Related]  

  • 12. The Design of an Energy Harvesting Wireless Sensor Node for Tracking Pink Iguanas.
    Loreti P; Catini A; De Luca M; Bracciale L; Gentile G; Di Natale C
    Sensors (Basel); 2019 Feb; 19(5):. PubMed ID: 30813516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Habituation of common vampire bats to biologgers.
    Kline E; Ripperger SP; Carter GG
    R Soc Open Sci; 2021 Dec; 8(12):211249. PubMed ID: 34966554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thinking small: Next-generation sensor networks close the size gap in vertebrate biologging.
    Ripperger SP; Carter GG; Page RA; Duda N; Koelpin A; Weigel R; Hartmann M; Nowak T; Thielecke J; Schadhauser M; Robert J; Herbst S; Meyer-Wegener K; Wägemann P; Schröder-Preikschat W; Cassens B; Kapitza R; Dressler F; Mayer F
    PLoS Biol; 2020 Apr; 18(4):e3000655. PubMed ID: 32240158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic gain control in the bat's sonar receiver and the neuroethology of echolocation.
    Kick SA; Simmons JA
    J Neurosci; 1984 Nov; 4(11):2725-37. PubMed ID: 6502201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bat-inspired integrally actuated membrane wings with leading-edge sensing.
    Buoso S; Dickinson BT; Palacios R
    Bioinspir Biomim; 2017 Dec; 13(1):016013. PubMed ID: 29283112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of vasoactive agents on the contractions of the initial lymphatics of the bat's wing.
    Unthank JL; Hogan RD
    Blood Vessels; 1987; 24(1-2):31-44. PubMed ID: 2882795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The active venous pulse in the wing circulation of bats (Chiroptera). A contribution to comparative angiology.
    Mislin H
    Experientia; 1978 Nov; 34(11):1391-8. PubMed ID: 363441
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of venous flow on frequency of venous vasomotion in the bat wing.
    WIEDEMAN MP
    Circ Res; 1957 Nov; 5(6):641-4. PubMed ID: 13473062
    [No Abstract]   [Full Text] [Related]  

  • 20. Wings as inertial appendages: how bats recover from aerial stumbles.
    Boerma DB; Breuer KS; Treskatis TL; Swartz SM
    J Exp Biol; 2019 Oct; 222(Pt 20):. PubMed ID: 31537651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.