BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31946215)

  • 1. Artificial Neural Network to Detect Human Hand Gestures for a Robotic Arm Control.
    Schabron B; Alashqar Z; Fuhrman N; Jibbe K; Desai J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1662-1665. PubMed ID: 31946215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheelchair-Mounted Upper Limb Robotic Exoskeleton with Adaptive Controller for Activities of Daily Living.
    Schabron B; Desai J; Yihun Y
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping Method of Human Arm Motion Based on Surface Electromyography Signals.
    Zheng Y; Zheng G; Zhang H; Zhao B; Sun P
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Surface EMG Pattern Recognition for Hand Gestures Based on an Artificial Neural Network.
    Zhang Z; Yang K; Qian J; Zhang L
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31323888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models.
    Gopal P; Gesta A; Mohebbi A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks.
    Lee KH; Min JY; Byun S
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. sEMG-Based Neural Network Prediction Model Selection of Gesture Fatigue and Dataset Optimization.
    Ma F; Song F; Liu Y; Niu J
    Comput Intell Neurosci; 2020; 2020():8853314. PubMed ID: 33224188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of Forearm sEMG Signals with IMU Sensors for Trajectory Planning and Control of Assistive Robotic Arm.
    Schabron B; Reust A; Desai J; Yihun Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5274-5277. PubMed ID: 31947047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface EMG signals in very late-stage of Duchenne muscular dystrophy: a case study.
    Lobo-Prat J; Janssen MMHP; Koopman BFJM; Stienen AHA; de Groot IJM
    J Neuroeng Rehabil; 2017 Aug; 14(1):86. PubMed ID: 28851391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG.
    Asif AR; Waris A; Gilani SO; Jamil M; Ashraf H; Shafique M; Niazi IK
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine-Learning-Based Muscle Control of a 3D-Printed Bionic Arm.
    Said S; Boulkaibet I; Sheikh M; Karar AS; Alkork S; Nait-Ali A
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32498289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions.
    Waris A; Niazi IK; Jamil M; Englehart K; Jensen W; Kamavuako EN
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1526-1534. PubMed ID: 30106701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hand Gesture Recognition Using Compact CNN Via Surface Electromyography Signals.
    Chen L; Fu J; Wu Y; Li H; Zheng B
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface EMG based hand gesture identification using semi blind ICA: validation of ICA matrix analysis.
    Naik GR; Kumar DK; Palaniswami M
    Electromyogr Clin Neurophysiol; 2008; 48(3-4):169-80. PubMed ID: 18551837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sEMG Classification Framework with Less Training Data.
    Kaneishi D; Matthew RP; Tomizuka M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1680-1684. PubMed ID: 30440718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation of pattern recognition networks using electromyography signal and time-domain features for the classification of hand gestures.
    Vasanthi SM; Jayasree T
    Proc Inst Mech Eng H; 2020 Jun; 234(6):639-648. PubMed ID: 32202473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between sEMG and force as control interfaces to support planar arm movements in adults with Duchenne: a feasibility study.
    Lobo-Prat J; Nizamis K; Janssen MMHP; Keemink AQL; Veltink PH; Koopman BFJM; Stienen AHA
    J Neuroeng Rehabil; 2017 Jul; 14(1):73. PubMed ID: 28701169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of Hand Gestures Based on EMG Signals with Deep and Double-Deep Q-Networks.
    Valdivieso Caraguay ÁL; Vásconez JP; Barona López LI; Benalcázar ME
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. sEMG-Based Hand Gesture Recognition Using Binarized Neural Network.
    Kang S; Kim H; Park C; Sim Y; Lee S; Jung Y
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hand gesture recognition using surface electromyography.
    Sharif H; Seo SB; Kesavadas TK
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():682-685. PubMed ID: 33018079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.