These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 31946326)

  • 1. Neural Activity from Attention Networks Predicts Movement Errors.
    Breault MS; Gonzalez-Martinez JA; Gale JT; Sarma SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2149-2152. PubMed ID: 31946326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of nonmotor brain regions during human motor control.
    Johnson JJ; Breault MS; Sacre P; Kerr MSD; Johnson M; Bulacio J; Gonzalez-Martinez J; Sarma SV; Gale JT
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2498-2501. PubMed ID: 29060406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonmotor regions encode path-related information during movements.
    Breault MS; Sacre P; Johnson JJ; Kerr M; Johnson MD; Bulacio J; Gonzalez-Martinez J; Sarma SV; Gale JT
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3339-3342. PubMed ID: 29060612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Correlates of Internal States that Capture Movement Variability.
    Breault MS; Gonzalez-Martinez JA; Gale JT; Sarma SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():534-537. PubMed ID: 31945955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoelectroencephalography for continuous two-dimensional cursor control in a brain-machine interface.
    Vadera S; Marathe AR; Gonzalez-Martinez J; Taylor DM
    Neurosurg Focus; 2013 Jun; 34(6):E3. PubMed ID: 23724837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concurrent control of a brain-computer interface and natural overt movements.
    Bashford L; Wu J; Sarma D; Collins K; Rao RPN; Ojemann JG; Mehring C
    J Neural Eng; 2018 Dec; 15(6):066021. PubMed ID: 30303130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG neural correlates of goal-directed movement intention.
    Pereira J; Ofner P; Schwarz A; Sburlea AI; Müller-Putz GR
    Neuroimage; 2017 Apr; 149():129-140. PubMed ID: 28131888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remapping cortical modulation for electrocorticographic brain-computer interfaces: a somatotopy-based approach in individuals with upper-limb paralysis.
    Degenhart AD; Hiremath SV; Yang Y; Foldes S; Collinger JL; Boninger M; Tyler-Kabara EC; Wang W
    J Neural Eng; 2018 Apr; 15(2):026021. PubMed ID: 29160240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.
    Müller-Putz GR; Schwarz A; Pereira J; Ofner P
    Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal models engaged by brain-computer interface control.
    Golub MD; Yu BM; Chase SM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1327-30. PubMed ID: 23366143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-computer interface control along instructed paths.
    Sadtler PT; Ryu SI; Tyler-Kabara EC; Yu BM; Batista AP
    J Neural Eng; 2015 Feb; 12(1):016015. PubMed ID: 25605498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model.
    Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    J Neurosci; 2017 Feb; 37(7):1721-1732. PubMed ID: 28087767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of dual-tasking with different levels of attention diversion on characteristics of the movement-related cortical potential.
    Aliakbaryhosseinabadi S; Kamavuako EN; Jiang N; Farina D; Mrachacz-Kersting N
    Brain Res; 2017 Nov; 1674():10-19. PubMed ID: 28830767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding three-dimensional reaching movements using electrocorticographic signals in humans.
    Bundy DT; Pahwa M; Szrama N; Leuthardt EC
    J Neural Eng; 2016 Apr; 13(2):026021. PubMed ID: 26902372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing Prediction Model for a Noninvasive Brain-Computer Interface Platform Using Channel Selection, Classification, and Regression.
    Borhani S; Kilmarx J; Saffo D; Ng L; Abiri R; Zhao X
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2475-2482. PubMed ID: 30640636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-motor Brain Regions in Non-dominant Hemisphere Are Influential in Decoding Movement Speed.
    Breault MS; Fitzgerald ZB; Sacré P; Gale JT; Sarma SV; González-Martínez JA
    Front Neurosci; 2019; 13():715. PubMed ID: 31379476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-machine interface cursor position only weakly affects monkey and human motor cortical activity in the absence of arm movements.
    Stavisky SD; Kao JC; Nuyujukian P; Pandarinath C; Blabe C; Ryu SI; Hochberg LR; Henderson JM; Shenoy KV
    Sci Rep; 2018 Nov; 8(1):16357. PubMed ID: 30397281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of Movement Preparation Between Attended and Distracted Self-Paced Motor Tasks.
    Aliakbaryhosseinabadi S; Kamavuako EN; Jiang N; Farina D; Mrachacz-Kersting N
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3060-3071. PubMed ID: 30794165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.