BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31946328)

  • 1. Force-Temporal Characteristics of EEG-EMG Coherence during Isometric Contraction of Lateral Head of Gastrocnemius Muscle.
    Igasaki T; Yamashita K; Ushijima T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2157-2160. PubMed ID: 31946328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contraction level-related modulation of corticomuscular coherence differs between the tibialis anterior and soleus muscles in humans.
    Ushiyama J; Masakado Y; Fujiwara T; Tsuji T; Hase K; Kimura A; Liu M; Ushiba J
    J Appl Physiol (1985); 2012 Apr; 112(8):1258-67. PubMed ID: 22302959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle fatigue-induced enhancement of corticomuscular coherence following sustained submaximal isometric contraction of the tibialis anterior muscle.
    Ushiyama J; Katsu M; Masakado Y; Kimura A; Liu M; Ushiba J
    J Appl Physiol (1985); 2011 May; 110(5):1233-40. PubMed ID: 21393470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnification of visual feedback modulates corticomuscular and intermuscular coherences differently in young and elderly adults.
    Watanabe T; Nojima I; Mima T; Sugiura H; Kirimoto H
    Neuroimage; 2020 Oct; 220():117089. PubMed ID: 32592849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Between-subject variance in the magnitude of corticomuscular coherence during tonic isometric contraction of the tibialis anterior muscle in healthy young adults.
    Ushiyama J; Suzuki T; Masakado Y; Hase K; Kimura A; Liu M; Ushiba J
    J Neurophysiol; 2011 Sep; 106(3):1379-88. PubMed ID: 21653712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antagonistic muscle prefatigue weakens the functional corticomuscular coupling during isometric elbow extension contraction.
    Wang L; Xie Z; Lu A; Lu T; Zhang S; Zheng F; Niu W
    Neuroreport; 2020 Mar; 31(5):372-380. PubMed ID: 31876688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces.
    Chakarov V; Naranjo JR; Schulte-Mönting J; Omlor W; Huethe F; Kristeva R
    J Neurophysiol; 2009 Aug; 102(2):1115-20. PubMed ID: 19458142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling.
    Siemionow V; Sahgal V; Yue GH
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):97-106. PubMed ID: 20371421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task-and phase-related changes in cortico-muscular coherence.
    Masakado Y; Nielsen JB
    Keio J Med; 2008 Mar; 57(1):50-6. PubMed ID: 18382125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromyographic responses of the human triceps surae and force tremor during sustained submaximal isometric plantar flexion.
    Löscher WN; Cresswell AG; Thorstensson A
    Acta Physiol Scand; 1994 Sep; 152(1):73-82. PubMed ID: 7810334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Information flow from the sensorimotor cortex to muscle in humans.
    Mima T; Matsuoka T; Hallett M
    Clin Neurophysiol; 2001 Jan; 112(1):122-6. PubMed ID: 11137669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue related changes in electromyographic coherence between synergistic hand muscles.
    Kattla S; Lowery MM
    Exp Brain Res; 2010 Apr; 202(1):89-99. PubMed ID: 20012600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between EEG-EMG coherence during isometric contraction and its imaginary execution.
    Hashimoto Y; Ushiba J; Kimura A; Liu M; Tomita Y
    Acta Neurobiol Exp (Wars); 2010; 70(1):76-85. PubMed ID: 20407489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of antagonistic ankle muscles during co-contraction in humans.
    Hansen S; Hansen NL; Christensen LO; Petersen NT; Nielsen JB
    Exp Brain Res; 2002 Oct; 146(3):282-92. PubMed ID: 12232685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta-band motor unit coherence and nonlinear surface EMG features of the first dorsal interosseous muscle vary with force.
    McManus L; Flood MW; Lowery MM
    J Neurophysiol; 2019 Sep; 122(3):1147-1162. PubMed ID: 31365308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weakening of functional corticomuscular coupling during muscle fatigue.
    Yang Q; Fang Y; Sun CK; Siemionow V; Ranganathan VK; Khoshknabi D; Davis MP; Walsh D; Sahgal V; Yue GH
    Brain Res; 2009 Jan; 1250():101-12. PubMed ID: 19028460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effect of contraction type and intensity on corticomuscular coherence during isokinetic plantar flexions.
    Glories D; Soulhol M; Amarantini D; Duclay J
    Eur J Appl Physiol; 2023 Mar; 123(3):609-621. PubMed ID: 36352055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual difference in β-band corticomuscular coherence and its relation to force steadiness during isometric voluntary ankle dorsiflexion in healthy humans.
    Ushiyama J; Yamada J; Liu M; Ushiba J
    Clin Neurophysiol; 2017 Feb; 128(2):303-311. PubMed ID: 28042996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters.
    Ushiyama J; Takahashi Y; Ushiba J
    J Appl Physiol (1985); 2010 Oct; 109(4):1086-95. PubMed ID: 20689093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of muscle fatigue on the cortical-muscle network: A combined electroencephalogram and electromyogram study.
    Xi X; Pi S; Zhao YB; Wang H; Luo Z
    Brain Res; 2021 Feb; 1752():147221. PubMed ID: 33358729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.