These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 31946337)
1. Multi-Modal Acute Stress Recognition Using Off-the-Shelf Wearable Devices. Montesinos V; Dell'Agnola F; Arza A; Aminifar A; Atienza D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2196-2201. PubMed ID: 31946337 [TBL] [Abstract][Full Text] [Related]
2. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices. Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895 [TBL] [Abstract][Full Text] [Related]
3. Objective stress monitoring based on wearable sensors in everyday settings. Han HJ; Labbaf S; Borelli JL; Dutt N; Rahmani AM J Med Eng Technol; 2020 May; 44(4):177-189. PubMed ID: 32589065 [TBL] [Abstract][Full Text] [Related]
4. Wearable-based human flow experience recognition enhanced by transfer learning methods using emotion data. Irshad MT; Li F; Nisar MA; Huang X; Buss M; Kloep L; Peifer C; Kozusznik B; Pollak A; Pyszka A; Flak O; Grzegorzek M Comput Biol Med; 2023 Nov; 166():107489. PubMed ID: 37769461 [TBL] [Abstract][Full Text] [Related]
5. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review. Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M Int J Med Inform; 2023 May; 173():105026. PubMed ID: 36893657 [TBL] [Abstract][Full Text] [Related]
6. A Wearable Multi-Modal Bio-Sensing System Towards Real-World Applications. Siddharth ; Patel AN; Jung TP; Sejnowski TJ IEEE Trans Biomed Eng; 2019 Apr; 66(4):1137-1147. PubMed ID: 30188809 [TBL] [Abstract][Full Text] [Related]
7. Coverage of Emotion Recognition for Common Wearable Biosensors. Hui TKL; Sherratt RS Biosensors (Basel); 2018 Mar; 8(2):. PubMed ID: 29587375 [TBL] [Abstract][Full Text] [Related]
8. Stress detection in daily life scenarios using smart phones and wearable sensors: A survey. Can YS; Arnrich B; Ersoy C J Biomed Inform; 2019 Apr; 92():103139. PubMed ID: 30825538 [TBL] [Abstract][Full Text] [Related]
9. Early versus Late Modality Fusion of Deep Wearable Sensor Features for Personalized Prediction of Tomorrow's Mood, Health, and Stress Li B; Sano A Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5896-5899. PubMed ID: 33019316 [TBL] [Abstract][Full Text] [Related]
10. Identification of Suitable Biomarkers for Stress and Emotion Detection for Future Personal Affective Wearable Sensors. Zamkah A; Hui T; Andrews S; Dey N; Shi F; Sherratt RS Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32316280 [TBL] [Abstract][Full Text] [Related]
11. An Explainable Deep Learning Approach for Stress Detection in Wearable Sensor Measurements. Moser MK; Ehrhart M; Resch B Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204782 [TBL] [Abstract][Full Text] [Related]
12. A Survey on Wearable Sensors for Mental Health Monitoring. Gomes N; Pato M; Lourenço AR; Datia N Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772370 [TBL] [Abstract][Full Text] [Related]
13. A Method for Stress Detection Using Empatica E4 Bracelet and Machine-Learning Techniques. Campanella S; Altaleb A; Belli A; Pierleoni P; Palma L Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050625 [TBL] [Abstract][Full Text] [Related]
14. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions. Menghini L; Gianfranchi E; Cellini N; Patron E; Tagliabue M; Sarlo M Psychophysiology; 2019 Nov; 56(11):e13441. PubMed ID: 31332802 [TBL] [Abstract][Full Text] [Related]
15. Experimental Analysis of Artificial Neural Networks Performance for Physical Activity Recognition Using Belt and Wristband Devices. Qi J; Yang Y; Peng X; Newcombe L; Simpson A; Yang P Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2492-2495. PubMed ID: 31946403 [TBL] [Abstract][Full Text] [Related]
16. Discrimination of simultaneous psychological and physical stressors using wristband biosignals. Sevil M; Rashid M; Hajizadeh I; Askari MR; Hobbs N; Brandt R; Park M; Quinn L; Cinar A Comput Methods Programs Biomed; 2021 Feb; 199():105898. PubMed ID: 33360529 [TBL] [Abstract][Full Text] [Related]
17. One-Channel Wearable Mental Stress State Monitoring System. Abdul Kader L; Al-Shargie F; Tariq U; Al-Nashash H Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205067 [TBL] [Abstract][Full Text] [Related]
18. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study. Can YS; Chalabianloo N; Ekiz D; Ersoy C Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456 [TBL] [Abstract][Full Text] [Related]
19. MsWH: A Multi-Sensory Hardware Platform for Capturing and Analyzing Physiological Emotional Signals. Asiain D; Ponce de León J; Beltrán JR Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957330 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of an Integrated System of Wearable Physiological Sensors for Stress Monitoring in Working Environments by Using Biological Markers. Betti S; Lova RM; Rovini E; Acerbi G; Santarelli L; Cabiati M; Del Ry S; Cavallo F IEEE Trans Biomed Eng; 2018 Aug; 65(8):1748-1758. PubMed ID: 29989933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]