These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31946387)

  • 1. A PID Controller Approach to Explain Human Ankle Biomechanics across Walking Speeds.
    Herve O; Martin A; Villarreal DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2420-2423. PubMed ID: 31946387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.
    Koller JR; Remy CD; Ferris DP
    J Neuroeng Rehabil; 2018 May; 15(1):42. PubMed ID: 29801451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An exploration of muscle co-activation during different walking speeds and the association with lower limb joint stiffness.
    Akl AR; Conceição F; Richards J
    J Biomech; 2023 Aug; 157():111715. PubMed ID: 37423119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait kinematics & kinetics at three walking speeds in individuals with chronic ankle instability and ankle sprain copers.
    Koldenhoven RM; Hart J; Saliba S; Abel MF; Hertel J
    Gait Posture; 2019 Oct; 74():169-175. PubMed ID: 31525655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnitude and variability of gait characteristics when walking on an irregular surface at different speeds.
    Blair S; Lake MJ; Ding R; Sterzing T
    Hum Mov Sci; 2018 Jun; 59():112-120. PubMed ID: 29653340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Ankle Joint Motion on Pelvis-Hip Biomechanics and Muscle Activity Patterns of Healthy Individuals in Knee Immobilization Gait.
    Guan X; Kuai S; Song L; Liu W; Liu Y; Ji L; Wang R
    J Healthc Eng; 2019; 2019():3812407. PubMed ID: 31737239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does texting while walking really affect gait in young adults?
    Agostini V; Lo Fermo F; Massazza G; Knaflitz M
    J Neuroeng Rehabil; 2015 Sep; 12():86. PubMed ID: 26395248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedback-Error Learning for time-effective gait trajectory tracking in wearable exoskeletons.
    Figueiredo J; Fernandes PN; Moreno JC; Santos CP
    Anat Rec (Hoboken); 2023 Apr; 306(4):728-740. PubMed ID: 35869906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of body weight support on ankle mechanics during treadmill walking.
    Lewek MD
    J Biomech; 2011 Jan; 44(1):128-33. PubMed ID: 20855074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between lower limb isometric strength and muscle structure with normal and challenged gait performance in older adults.
    Guadagnin EC; Priario LAA; Carpes FP; Vaz MA
    Gait Posture; 2019 Sep; 73():101-107. PubMed ID: 31319373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower limb joint stiffness and muscle co-contraction adaptations to instability footwear during locomotion.
    Apps C; Sterzing T; O'Brien T; Lake M
    J Electromyogr Kinesiol; 2016 Dec; 31():55-62. PubMed ID: 27684529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing neural control and mechanically intrinsic control of powered ankle exoskeletons.
    Koller JR; David Remy C; Ferris DP
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():294-299. PubMed ID: 28813834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanics and energetics of incline walking with robotic ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.