These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31946389)

  • 1. Pre-impact detection algorithm to identify lack of balance due to tripping-like perturbations.
    Aprigliano F; Guaitolini M; Sabatini AM; Micera S; Monaco V
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2430-2433. PubMed ID: 31946389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-Impact Detection Algorithm to Identify Tripping Events Using Wearable Sensors.
    Aprigliano F; Micera S; Monaco V
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31461908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of time-frequency features as detectors of lack of balance due to tripping-like perturbations.
    Guaitolini M; Aprigliano F; Mannini A; Monaco V; Micera S; Sabatini AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2443-2446. PubMed ID: 31946392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting slipping-like perturbations by using adaptive oscillators.
    Tropea P; Vitiello N; Martelli D; Aprigliano F; Micera S; Monaco V
    Ann Biomed Eng; 2015 Feb; 43(2):416-26. PubMed ID: 25377766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeated exposure to tripping like perturbations elicits more precise control and lower toe clearance of the swinging foot during steady walking.
    Miyake T; Aprigliano F; Sugano S; Micera S; Monaco V
    Hum Mov Sci; 2021 Apr; 76():102775. PubMed ID: 33631422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of foot clearance parameters as a precursor to forecasting the risk of tripping and falling.
    Lai DT; Taylor SB; Begg RK
    Hum Mov Sci; 2012 Apr; 31(2):271-83. PubMed ID: 21035220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the most common gait perturbations on the compensatory limb's ankle, knee, and hip moments during the first stepping response.
    Yoo D; Seo KH; Lee BC
    Gait Posture; 2019 Jun; 71():98-104. PubMed ID: 31031225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computation method for available response time due to tripping at minimum foot clearance.
    Nagano H; Begg R; Sparrow WA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4899-902. PubMed ID: 24110833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging effects on leg joint variability during walking with balance perturbations.
    Qiao M; Feld JA; Franz JR
    Gait Posture; 2018 May; 62():27-33. PubMed ID: 29510323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of tripping gait patterns in the elderly using autoregressive features and support vector machines.
    Lai DT; Begg RK; Taylor S; Palaniswami M
    J Biomech; 2008; 41(8):1762-72. PubMed ID: 18433757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hip recovery strategy used by below-knee amputees following mediolateral foot perturbations.
    Miller SE; Segal AD; Klute GK; Neptune RR
    J Biomech; 2018 Jul; 76():61-67. PubMed ID: 29887363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of gait speed on stability of walking revealed by simulated response to tripping perturbation.
    Klemetti R; Moilanen P; Avela J; Timonen J
    Gait Posture; 2014; 39(1):534-9. PubMed ID: 24091248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel wearable device to deliver unconstrained, unpredictable slip perturbations during gait.
    Rasmussen CM; Hunt NH
    J Neuroeng Rehabil; 2019 Oct; 16(1):118. PubMed ID: 31623680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical risk factors for tripping during obstacle--Crossing with the trailing limb in patients with type II diabetes mellitus.
    Hsu WC; Liu MW; Lu TW
    Gait Posture; 2016 Mar; 45():103-9. PubMed ID: 26979890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery response latencies to tripping perturbations during gait decrease with practice.
    Forner-Cordero A; van der Helm FC; Koopman HF; Duysens J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6748-51. PubMed ID: 26737842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing slip-like responses during gait using an entire support surface perturbation: Comparisons to previously established slip methods.
    Huntley AH; Rajachandrakumar R; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2019 Mar; 69():130-135. PubMed ID: 30708096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging does not affect the intralimb coordination elicited by slip-like perturbation of different intensities.
    Aprigliano F; Martelli D; Tropea P; Pasquini G; Micera S; Monaco V
    J Neurophysiol; 2017 Sep; 118(3):1739-1748. PubMed ID: 28701547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in inter-joint coordination during walking of elderly adults and its association with clinical balance measures.
    Chiu SL; Chou LS
    Clin Biomech (Bristol); 2013 Apr; 28(4):454-8. PubMed ID: 23538128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of various arm and walking conditions on postural dynamic stability when recovering from a trip perturbation.
    Gholizadeh H; Hill A; Nantel J
    Gait Posture; 2020 Feb; 76():284-289. PubMed ID: 31884255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of repeated waist-pull perturbations on gait stability in subjects with cerebellar ataxia.
    Aprigliano F; Martelli D; Kang J; Kuo SH; Kang UJ; Monaco V; Micera S; Agrawal SK
    J Neuroeng Rehabil; 2019 Apr; 16(1):50. PubMed ID: 30975168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.