These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31946412)

  • 1. Imputing Missing Data In Large-Scale Multivariate Biomedical Wearable Recordings Using Bidirectional Recurrent Neural Networks With Temporal Activation Regularization.
    Feng T; Narayanan S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2529-2534. PubMed ID: 31946412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning.
    Uddin MZ; Soylu A
    Sci Rep; 2021 Aug; 11(1):16455. PubMed ID: 34385552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network
    Huynh-The T; Hua CH; Kim DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ReLearn: A Robust Machine Learning Framework in Presence of Missing Data for Multimodal Stress Detection from Physiological Signals
    Iranfar A; Arza A; Atienza D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():535-541. PubMed ID: 34891350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep stage classification based on multi-level feature learning and recurrent neural networks via wearable device.
    Zhang X; Kou W; Chang EI; Gao H; Fan Y; Xu Y
    Comput Biol Med; 2018 Dec; 103():71-81. PubMed ID: 30342269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Exploration of Machine-Learning Estimation of Ground Reaction Force from Wearable Sensor Data.
    Hendry D; Leadbetter R; McKee K; Hopper L; Wild C; O'Sullivan P; Straker L; Campbell A
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32013212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of End-to-End Neural Network Architectures and Data Augmentation Methods for Automatic Infant Motility Assessment Using Wearable Sensors.
    Airaksinen M; Vanhatalo S; Räsänen O
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Analysis of Artificial Neural Networks Performance for Physical Activity Recognition Using Belt and Wristband Devices.
    Qi J; Yang Y; Peng X; Newcombe L; Simpson A; Yang P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2492-2495. PubMed ID: 31946403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Posture and Movement Tracking of Infants with Wearable Movement Sensors.
    Airaksinen M; Räsänen O; Ilén E; Häyrinen T; Kivi A; Marchi V; Gallen A; Blom S; Varhe A; Kaartinen N; Haataja L; Vanhatalo S
    Sci Rep; 2020 Jan; 10(1):169. PubMed ID: 31932616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data Analytics and Applications of the Wearable Sensors in Healthcare: An Overview.
    Uddin M; Syed-Abdul S
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32138291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning based Human Gait Segmentation with Wearable Sensor Platform.
    Potluri S; Chandran AB; Diedrich C; Schega L
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():588-594. PubMed ID: 31945967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognizing Physical Activity of Older People from Wearable Sensors and Inconsistent Data.
    Papagiannaki A; Zacharaki EI; Kalouris G; Kalogiannis S; Deltouzos K; Ellul J; Megalooikonomou V
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Sensor Data to Track Subject-Specific Movement Patterns Related to Clinical Outcomes Using a Machine Learning Approach.
    Kobsar D; Ferber R
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition.
    Ordóñez FJ; Roggen D
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26797612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of Sedentary Behavior by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living for Telemedical Assessment of Cardiovascular Risk.
    Kańtoch E
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Fall Detector Using Recurrent Neural Networks.
    Luna-Perejón F; Domínguez-Morales MJ; Civit-Balcells A
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31717442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Training recurrent neural networks robust to incomplete data: Application to Alzheimer's disease progression modeling.
    Mehdipour Ghazi M; Nielsen M; Pai A; Cardoso MJ; Modat M; Ourselin S; Sørensen L;
    Med Image Anal; 2019 Apr; 53():39-46. PubMed ID: 30682584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application-Based Production and Testing of a Core-Sheath Fiber Strain Sensor for Wearable Electronics: Feasibility Study of Using the Sensors in Measuring Tri-Axial Trunk Motion Angles.
    Rezaei A; Cuthbert TJ; Gholami M; Menon C
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31623321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NT-FDS-A Noise Tolerant Fall Detection System Using Deep Learning on Wearable Devices.
    Waheed M; Afzal H; Mehmood K
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-SORM: A digital solution for remote monitoring based on the attitude of wearable devices.
    Abbas M; Somme D; Le Bouquin Jeannès R
    Comput Methods Programs Biomed; 2021 Sep; 208():106247. PubMed ID: 34260971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.