These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31946438)

  • 1. Visualized Evidences for Detecting Novelty in Myoelectric Pattern Recognition using 3D Convolutional Neural Networks
    Wu L; Zhang X; Chen X; Chen X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2641-2644. PubMed ID: 31946438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rejecting Novel Motions in High-Density Myoelectric Pattern Recognition Using Hybrid Neural Networks.
    Wu L; Chen X; Chen X; Zhang X
    Front Neurorobot; 2022; 16():862193. PubMed ID: 35418847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Calibration of Electrode Array Shifts Enables Robust Myoelectric Control.
    Zhang X; Wu L; Yu B; Chen X; Chen X
    IEEE Trans Biomed Eng; 2020 Jul; 67(7):1947-1957. PubMed ID: 31715562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved High-Density Myoelectric Pattern Recognition Control Against Electrode Shift Using Data Augmentation and Dilated Convolutional Neural Network.
    Wu L; Zhang X; Wang K; Chen X; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2637-2646. PubMed ID: 33052847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns.
    Pan L; Zhang D; Jiang N; Sheng X; Zhu X
    J Neuroeng Rehabil; 2015 Dec; 12():110. PubMed ID: 26631105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting the universal adversarial perturbations on high-density sEMG signals.
    Xue B; Wu L; Liu A; Zhang X; Chen X; Chen X
    Comput Biol Med; 2022 Oct; 149():105978. PubMed ID: 36037630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification complexity in myoelectric pattern recognition.
    Nilsson N; HÃ¥kansson B; Ortiz-Catalan M
    J Neuroeng Rehabil; 2017 Jul; 14(1):68. PubMed ID: 28693533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Hybrid Classifier for Myoelectric Pattern Recognition Against the Interferences of Outlier Motion, Muscle Fatigue, and Electrode Doffing.
    Ding Q; Zhao X; Han J; Bu C; Wu C
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1071-1080. PubMed ID: 30998472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myoelectric Pattern Recognition Using Gramian Angular Field and Convolutional Neural Networks for Muscle-Computer Interface.
    Fan J; Wen J; Lai Z
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Density Surface EMG-Based Gesture Recognition Using a 3D Convolutional Neural Network.
    Chen J; Bi S; Zhang G; Cao G
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feature dimensionality reduction for myoelectric pattern recognition: a comparison study of feature selection and feature projection methods.
    Liu J
    Med Eng Phys; 2014 Dec; 36(12):1716-20. PubMed ID: 25292451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol.
    Stango A; Negro F; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):189-98. PubMed ID: 25389242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Deep Transfer Learning Approach to Reducing the Effect of Electrode Shift in EMG Pattern Recognition-Based Control.
    Ameri A; Akhaee MA; Scheme E; Englehart K
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):370-379. PubMed ID: 31880557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-User Electromyography Pattern Recognition Based on a Novel Spatial-Temporal Graph Convolutional Network.
    Xu M; Chen X; Ruan Y; Zhang X
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():72-82. PubMed ID: 38090843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel feature extraction for robust EMG pattern recognition.
    Veer K; Sharma T
    J Med Eng Technol; 2016; 40(4):149-54. PubMed ID: 27004618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of multiple dynamic factors on the performance of myoelectric pattern recognition.
    Khushaba RN; Al-Timemy A; Kodagoda S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1679-82. PubMed ID: 26736599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Event-Driven Spiking Convolutional Neural Network for Electromyography Pattern Recognition.
    Xu M; Chen X; Sun A; Zhang X; Chen X
    IEEE Trans Biomed Eng; 2023 Sep; 70(9):2604-2615. PubMed ID: 37030849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whitening of the electromyogram for improved classification accuracy in prosthesis control.
    Liu L; Liu P; Clancy EA; Scheme E; Englehart KB
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2627-30. PubMed ID: 23366464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HD-EMG Electrode Count and Feature Selection Influence on Pattern-based Movement Classification Accuracy.
    Lara J; Paskaranandavadivel N; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4787-4790. PubMed ID: 33019061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using spatial features for classification of combined motions based on common spatial pattern.
    Huiyang Lu ; Haoshi Zhang ; Zhong Wang ; Ruomei Wang ; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2271-2274. PubMed ID: 29060350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.