These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31946463)

  • 1. Shape, Pose and Density Statistical Model for 3D Reconstruction of Articulated Structures from X-Ray Images.
    Tchinde Fotsin TJ; Vazquez C; Cresson T; De Guise J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2748-2751. PubMed ID: 31946463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2D/3D reconstruction of the distal femur using statistical shape models addressing personalized surgical instruments in knee arthroplasty: A feasibility analysis.
    Cerveri P; Sacco C; Olgiati G; Manzotti A; Baroni G
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28387436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur.
    Laporte S; Skalli W; de Guise JA; Lavaste F; Mitton D
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):1-6. PubMed ID: 12623432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D femur model reconstruction from biplane X-ray images: a novel method based on Laplacian surface deformation.
    Karade V; Ravi B
    Int J Comput Assist Radiol Surg; 2015 Apr; 10(4):473-85. PubMed ID: 25037878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H
    Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D shape reconstruction of the femur from planar X-ray images using statistical shape and appearance models.
    Nolte D; Xie S; Bull AMJ
    Biomed Eng Online; 2023 Mar; 22(1):30. PubMed ID: 36964560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automatic reconstruction of personalized 3D volumes of the proximal femur from 2D X-ray images.
    Yu W; Chu C; Tannast M; Zheng G
    Int J Comput Assist Radiol Surg; 2016 Sep; 11(9):1673-85. PubMed ID: 27038965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph.
    Zheng G
    Med Phys; 2010 Apr; 37(4):1424-39. PubMed ID: 20443464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2D-3D shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models.
    Baka N; Kaptein BL; de Bruijne M; van Walsum T; Giphart JE; Niessen WJ; Lelieveldt BP
    Med Image Anal; 2011 Dec; 15(6):840-50. PubMed ID: 21600836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Personalized X-ray reconstruction of the proximal femur via intensity-based non-rigid 2D-3D registration.
    Zheng G
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 2):598-606. PubMed ID: 21995078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3X-Knee: A Novel Technology for 3D Preoperative Planning and Postoperative Evaluation of TKA Based on 2D X-Rays.
    Zheng G; Alcoltekin A; Thelen B; Nolte LP
    Adv Exp Med Biol; 2018; 1093():93-103. PubMed ID: 30306475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional reconstruction of the lower limb from biplanar calibrated radiographs.
    Quijano S; Serrurier A; Aubert B; Laporte S; Thoreux P; Skalli W
    Med Eng Phys; 2013 Dec; 35(12):1703-12. PubMed ID: 23938086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atlas-Based 3D Intensity Volume Reconstruction from 2D Long Leg Standing X-Rays: Application to Hard and Soft Tissues in Lower Extremity.
    Yu W; Zheng G
    Adv Exp Med Biol; 2018; 1093():105-112. PubMed ID: 30306476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: a validation study.
    Zheng G; Schumann S
    Med Phys; 2009 Apr; 36(4):1155-66. PubMed ID: 19472621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-dimensional reconstruction algorithm for an inverse-geometry volumetric CT system.
    Schmidt TG; Fahrig R; Pelc NJ
    Med Phys; 2005 Nov; 32(11):3234-45. PubMed ID: 16370414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical note: comparison between single and multiview simulated DXA configurations for reconstructing the 3D shape and bone mineral density distribution of the proximal femur.
    Humbert L; Whitmarsh T; Craene MD; Del Río Barquero LM; Frangi AF
    Med Phys; 2012 Aug; 39(8):5272-6. PubMed ID: 22894452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust femur condyle disambiguation on biplanar X-rays.
    Serrurier A; Quijano S; Nizard R; Skalli W
    Med Eng Phys; 2012 Dec; 34(10):1433-40. PubMed ID: 22349135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D surface reconstruction of the femur and tibia from parallel 2D contours.
    Lin B; Jin D; Socorro Borges MA
    J Orthop Surg Res; 2022 Mar; 17(1):145. PubMed ID: 35248091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images.
    Zheng G; Gollmer S; Schumann S; Dong X; Feilkas T; González Ballester MA
    Med Image Anal; 2009 Dec; 13(6):883-99. PubMed ID: 19162529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Reconstruction of Foot in the Weightbearing Position From Biplanar Radiographs: Evaluation of Accuracy and Reliability.
    Rohan PY; Perrier A; Ramanoudjame M; Hausselle J; Lelièvre H; Seringe R; Skalli W; Wicart P
    J Foot Ankle Surg; 2018; 57(5):931-937. PubMed ID: 30001938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.