These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 31946504)
1. Measurement and Analysis of Complex Permittivity of Breast Cancer in Microwave Band. Kuwahara Y; Nakada Y; Nozaki A; Fujii K Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2929-2932. PubMed ID: 31946504 [TBL] [Abstract][Full Text] [Related]
2. Dielectric properties for non-invasive detection of normal, benign, and malignant breast tissues using microwave theories. Cheng Y; Fu M Thorac Cancer; 2018 Apr; 9(4):459-465. PubMed ID: 29465782 [TBL] [Abstract][Full Text] [Related]
3. Use of multi-angle ultra-wide band microwave sounding for high resolution breast imaging. Shipilov S; Eremeev A; Yakubov V; Fedyanin I; Satarov R; Zavyalova K; Shipilova S; Balzovsky E Med Phys; 2020 Oct; 47(10):5147-5157. PubMed ID: 32885421 [TBL] [Abstract][Full Text] [Related]
4. A Pilot Study of the Impact of Microwave Ablation on the Dielectric Properties of Breast Tissue. Neira LM; Mays RO; Sawicki JF; Schulman A; Harter J; Wilke LG; Behdad N; Van Veen BD; Hagness SC Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036268 [TBL] [Abstract][Full Text] [Related]
5. Review of Microwaves Techniques for Breast Cancer Detection. Aldhaeebi MA; Alzoubi K; Almoneef TS; Bamatraf SM; Attia H; M Ramahi O Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32331443 [TBL] [Abstract][Full Text] [Related]
6. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries. Lazebnik M; McCartney L; Popovic D; Watkins CB; Lindstrom MJ; Harter J; Sewall S; Magliocco A; Booske JH; Okoniewski M; Hagness SC Phys Med Biol; 2007 May; 52(10):2637-56. PubMed ID: 17473342 [TBL] [Abstract][Full Text] [Related]
7. Ultra-Wideband (UWB) Antenna Sensor Based Microwave Breast Imaging: A Review. Mahmud MZ; Islam MT; Misran N; Almutairi AF; Cho M Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30189633 [TBL] [Abstract][Full Text] [Related]
8. In Vivo Dielectric Properties of Healthy and Benign Rat Mammary Tissues from 500 MHz to 18 GHz. Yilmaz T; Ates Alkan F Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295215 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of Multimodal Microwave-Ultrasound Breast Imaging Using a Deep-Learning Technique. Khoshdel V; Ashraf A; LoVetri J Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546925 [TBL] [Abstract][Full Text] [Related]
10. A quick accurate method for measuring the microwave dielectric properties of small tissue samples. Land DV; Campbell AM Phys Med Biol; 1992 Jan; 37(1):183-92. PubMed ID: 1741423 [TBL] [Abstract][Full Text] [Related]
11. Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images. Lavoie BR; Okoniewski M; Fear EC PLoS One; 2016; 11(9):e0160849. PubMed ID: 27611785 [TBL] [Abstract][Full Text] [Related]
12. Microwave dielectric properties of normal, fibroelastotic, and malignant human lung tissue. Evans AL; Buehler D; Schulte JJ; McCarthy DP; Hagness SC Biomed Phys Eng Express; 2024 Aug; 10(5):. PubMed ID: 39102844 [TBL] [Abstract][Full Text] [Related]
13. Toward carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: enhanced dielectric and heating response of tissue-mimicking materials. Mashal A; Sitharaman B; Li X; Avti PK; Sahakian AV; Booske JH; Hagness SC IEEE Trans Biomed Eng; 2010 Aug; 57(8):1831-4. PubMed ID: 20176534 [TBL] [Abstract][Full Text] [Related]
14. Electromagnetic spectroscopy of normal breast tissue specimens obtained from reduction surgeries: comparison of optical and microwave properties. Lazebnik M; Zhu C; Palmer GM; Harter J; Sewall S; Ramanujam N; Hagness SC IEEE Trans Biomed Eng; 2008 Oct; 55(10):2444-51. PubMed ID: 18838370 [TBL] [Abstract][Full Text] [Related]
15. Nanoscale Electric Permittivity of Single Bacterial Cells at Gigahertz Frequencies by Scanning Microwave Microscopy. Biagi MC; Fabregas R; Gramse G; Van Der Hofstadt M; Juárez A; Kienberger F; Fumagalli L; Gomila G ACS Nano; 2016 Jan; 10(1):280-8. PubMed ID: 26643251 [TBL] [Abstract][Full Text] [Related]
16. Time-domain microwave breast cancer detection: extensive system testing with phantoms. Porter E; Santorelli A; Coates M; Popovic M Technol Cancer Res Treat; 2013 Apr; 12(2):131-43. PubMed ID: 23098283 [TBL] [Abstract][Full Text] [Related]
17. Multi-frequency Integration Algorithm of Contrast Source Inversion Method for Microwave Breast Tumor Detection Sato H; Kidera S Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1863-1867. PubMed ID: 31946261 [TBL] [Abstract][Full Text] [Related]
18. Assessing Patient-Specific Microwave Breast Imaging in Clinical Case Studies. O'Loughlin D; Elahi MA; Lavoie BR; Fear EC; O'Halloran M Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884050 [TBL] [Abstract][Full Text] [Related]
19. Single-slice microwave imaging of breast cancer by reverse time migration. Bilgin E; Çayören M; Joof S; Cansiz G; Yilmaz T; Akduman I Med Phys; 2022 Oct; 49(10):6599-6608. PubMed ID: 35942614 [TBL] [Abstract][Full Text] [Related]
20. Breast cancer cells exhibits specific dielectric signature in vitro using the open-ended coaxial probe technique from 200 MHz to 13.6 GHz. Hussein M; Awwad F; Jithin D; El Hasasna H; Athamneh K; Iratni R Sci Rep; 2019 Mar; 9(1):4681. PubMed ID: 30886170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]