These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31946513)

  • 1. Estimation of dispersive properties of encapsulation tissue surrounding deep brain stimulation electrodes in the rat.
    Sridhar K; Evers J; Botelho DP; Lowery MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2973-2976. PubMed ID: 31946513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of dispersive conductivity and permittivity in volume conductor models of deep brain stimulation.
    Grant PF; Lowery MM
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2386-93. PubMed ID: 20595081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation-induced changes at the electrode-tissue interface and their influence on deep brain stimulation.
    Evers J; Sridhar K; Liegey J; Brady J; Jahns H; Lowery M
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35728575
    [No Abstract]   [Full Text] [Related]  

  • 4. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording.
    Lai HY; Liao LD; Lin CT; Hsu JH; He X; Chen YY; Chang JY; Chen HF; Tsang S; Shih YY
    J Neural Eng; 2012 Jun; 9(3):036001. PubMed ID: 22488106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliability of parylene-based multi-electrode arrays chronically implanted in adult rat brains, and evidence of electrical stimulation on contact impedance.
    Torres-Martinez N; Ratel D; Crétallaz C; Gaude C; Maubert S; Divoux JL; Henry C; Guiraud D; Sauter-Starace F
    J Neural Eng; 2019 Nov; 16(6):066047. PubMed ID: 31374559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Active Electrode in the Living Brain: The Response of the Brain Parenchyma to Chronically Implanted Deep Brain Stimulation Electrodes.
    Evers J; Lowery M
    Oper Neurosurg (Hagerstown); 2021 Jan; 20(2):131-140. PubMed ID: 33074305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-vitro evaluation of the long-term stability of PEDOT:PSS coated microelectrodes for chronic recording and electrical stimulation of neurons.
    Schander A; Tesmann T; Strokov S; Stemmann H; Kreiter AK; Lang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6174-6177. PubMed ID: 28269662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric field distribution in a finite-volume head model of deep brain stimulation.
    Grant PF; Lowery MM
    Med Eng Phys; 2009 Nov; 31(9):1095-103. PubMed ID: 19656716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Method of Flexible Micro-Wire Electrode Insertion in Rodent for Chronic Neural Recording and a Device for Electrode Insertion.
    Arafat MA; Rubin LN; Jefferys JGR; Irazoqui PP
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1724-1731. PubMed ID: 31380762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplified parametric models of the dielectric properties of brain and muscle tissue during electrical stimulation.
    Grant PF; Lowery MM
    Med Eng Phys; 2019 Mar; 65():61-67. PubMed ID: 30660348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo impedance spectroscopy of deep brain stimulation electrodes.
    Lempka SF; Miocinovic S; Johnson MD; Vitek JL; McIntyre CC
    J Neural Eng; 2009 Aug; 6(4):046001. PubMed ID: 19494421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical properties of implant encapsulation tissue.
    Grill WM; Mortimer JT
    Ann Biomed Eng; 1994; 22(1):23-33. PubMed ID: 8060024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical resistance increases at the tissue-electrode interface as an early response to nucleus accumbens deep brain stimulation.
    Kale RP; Kouzani AZ; Berk J; Walder K; Berk M; Tye SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1814-1817. PubMed ID: 28324953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes.
    McConnell GC; Butera RJ; Bellamkonda RV
    J Neural Eng; 2009 Oct; 6(5):055005. PubMed ID: 19721187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conductive nanogel-interfaced neural microelectrode arrays with electrically controlled in-situ delivery of manganese ions enabling high-resolution MEMRI for synchronous neural tracing with deep brain stimulation.
    Huang WC; Lo YC; Chu CY; Lai HY; Chen YY; Chen SY
    Biomaterials; 2017 Apr; 122():141-153. PubMed ID: 28119154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical rejuvenation of chronically implanted macroelectrodes in nonhuman primates.
    O'Sullivan KP; Orazem ME; Otto KJ; Butson CR; Baker JL
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38862007
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.