These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 31946538)
21. Detection of movement-related cortical potentials based on subject-independent training. Niazi IK; Jiang N; Jochumsen M; Nielsen JF; Dremstrup K; Farina D Med Biol Eng Comput; 2013 May; 51(5):507-12. PubMed ID: 23283643 [TBL] [Abstract][Full Text] [Related]
22. Development and evaluation of a BCI-neurofeedback system with real-time EEG detection and electrical stimulation assistance during motor attempt for neurorehabilitation of children with cerebral palsy. Behboodi A; Kline J; Gravunder A; Phillips C; Parker SM; Damiano DL Front Hum Neurosci; 2024; 18():1346050. PubMed ID: 38633751 [TBL] [Abstract][Full Text] [Related]
23. Induction of Neural Plasticity Using a Low-Cost Open Source Brain-Computer Interface and a 3D-Printed Wrist Exoskeleton. Jochumsen M; Janjua TAM; Arceo JC; Lauber J; Buessinger ES; Kæseler RL Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33467420 [TBL] [Abstract][Full Text] [Related]
24. EEG neural correlates of goal-directed movement intention. Pereira J; Ofner P; Schwarz A; Sburlea AI; Müller-Putz GR Neuroimage; 2017 Apr; 149():129-140. PubMed ID: 28131888 [TBL] [Abstract][Full Text] [Related]
25. A Review of Techniques for Detection of Movement Intention Using Movement-Related Cortical Potentials. Shakeel A; Navid MS; Anwar MN; Mazhar S; Jochumsen M; Niazi IK Comput Math Methods Med; 2015; 2015():346217. PubMed ID: 26881008 [TBL] [Abstract][Full Text] [Related]
26. Adaptive spatio-temporal filtering for movement related potentials in EEG-based brain-computer interfaces. Lu J; Xie K; McFarland DJ IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):847-57. PubMed ID: 24723632 [TBL] [Abstract][Full Text] [Related]
27. EEG-Based Strategies to Detect Motor Imagery for Control and Rehabilitation. Ang KK; Guan C IEEE Trans Neural Syst Rehabil Eng; 2017 Apr; 25(4):392-401. PubMed ID: 28055887 [TBL] [Abstract][Full Text] [Related]
28. Participant-specific classifier tuning increases the performance of hand movement detection from EEG in patients with amyotrophic lateral sclerosis. Aliakbaryhosseinabadi S; Dosen S; Savic AM; Blicher J; Farina D; Mrachacz-Kersting N J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34280899 [No Abstract] [Full Text] [Related]
29. Detecting intention to execute the next movement while performing current movement from EEG using global optimal constrained ICA. Eilbeigi E; Setarehdan SK Comput Biol Med; 2018 Aug; 99():63-75. PubMed ID: 29890509 [TBL] [Abstract][Full Text] [Related]
30. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications. Shin Y; Lee S; Ahn M; Cho H; Jun SC; Lee HN Comput Biol Med; 2015 Nov; 66():29-38. PubMed ID: 26378500 [TBL] [Abstract][Full Text] [Related]
31. An embedded implementation based on adaptive filter bank for brain-computer interface systems. Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806 [TBL] [Abstract][Full Text] [Related]
32. Improving session-to-session transfer performance of motor imagery-based BCI using Adaptive Extreme Learning Machine. Bamdadian A; Guan C; Ang KK; Xu J Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2188-91. PubMed ID: 24110156 [TBL] [Abstract][Full Text] [Related]
33. Automated Labeling of Movement- Related Cortical Potentials Using Segmented Regression. Rashid U; Niazi IK; Jochumsen M; Krol LR; Signal N; Taylor D IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1282-1291. PubMed ID: 31071043 [TBL] [Abstract][Full Text] [Related]
34. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar. Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824 [TBL] [Abstract][Full Text] [Related]
35. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals. Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132 [TBL] [Abstract][Full Text] [Related]
36. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces. Iturrate I; Montesano L; Minguez J J Neural Eng; 2013 Apr; 10(2):026024. PubMed ID: 23528750 [TBL] [Abstract][Full Text] [Related]
37. Adaptive Stacked Generalization for Multiclass Motor Imagery-Based Brain Computer Interfaces. Nicolas-Alonso LF; Corralejo R; Gomez-Pilar J; Álvarez D; Hornero R IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):702-12. PubMed ID: 25680208 [TBL] [Abstract][Full Text] [Related]
38. Analysis and Classification for EEG Patterns of Force Motor Imagery Using Movement Related Cortical Potentials. Wang K; Xu M; Zhang S; Ke Y; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():211-214. PubMed ID: 30440375 [TBL] [Abstract][Full Text] [Related]
39. Time sparsification of EEG signals in motor-imagery based brain computer interfaces. Higashi H; Tanaka T Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4271-4. PubMed ID: 23366871 [TBL] [Abstract][Full Text] [Related]
40. Detection of Movement Related Cortical Potentials from EEG Using Constrained ICA for Brain-Computer Interface Applications. Karimi F; Kofman J; Mrachacz-Kersting N; Farina D; Jiang N Front Neurosci; 2017; 11():356. PubMed ID: 28713232 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]