These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 31946541)
1. Towards a fully spatially coded brain-computer interface: simultaneous decoding of visual eccentricity and direction. Chen J; Hong B; Wang Y; Gao X; Zhang D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3091-3094. PubMed ID: 31946541 [TBL] [Abstract][Full Text] [Related]
2. A Single-Stimulus, Multitarget BCI Based on Retinotopic Mapping of Motion-Onset VEPs. Chen J; Li Z; Hong B; Maye A; Engel AK; Zhang D IEEE Trans Biomed Eng; 2019 Feb; 66(2):464-470. PubMed ID: 29993456 [TBL] [Abstract][Full Text] [Related]
3. A Spatially-Coded Visual Brain-Computer Interface for Flexible Visual Spatial Information Decoding. Chen J; Wang Y; Maye A; Hong B; Gao X; Engel AK; Zhang D IEEE Trans Neural Syst Rehabil Eng; 2021; 29():926-933. PubMed ID: 33983885 [TBL] [Abstract][Full Text] [Related]
4. Detection of fixation points using a small visual landmark for brain-computer interfaces. Zhou X; Xu M; Xiao X; Wang Y; Jung TP; Ming D J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34130268 [No Abstract] [Full Text] [Related]
5. Phase-Spatial Beamforming Renders a Visual Brain Computer Interface Capable of Exploiting EEG Electrode Phase Shifts in Motion-Onset Target Responses. Libert A; Wittevrongel B; Camarrone F; Van Hulle MM IEEE Trans Biomed Eng; 2022 May; 69(5):1802-1812. PubMed ID: 34932468 [TBL] [Abstract][Full Text] [Related]
6. Robustness analysis of decoding SSVEPs in humans with head movements using a moving visual flicker. Kanoga S; Nakanishi M; Murai A; Tada M; Kanemura A J Neural Eng; 2019 Dec; 17(1):016009. PubMed ID: 31722321 [TBL] [Abstract][Full Text] [Related]
7. A Novel Approach to Decode Covert Spatial Attention Using SSVEP and Single-Frequency Phase-Coded Stimuli. Armengol-Urpi A; Salazar-Gomez AF; Sarma SE Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5694-5699. PubMed ID: 34892414 [TBL] [Abstract][Full Text] [Related]
8. Exploiting the temporal patterning of transient VEP signals: a statistical single-trial methodology with implications to brain-computer interfaces (BCIs). Liparas D; Dimitriadis SI; Laskaris NA; Tzelepi A; Charalambous K; Angelis L J Neurosci Methods; 2014 Jul; 232():189-98. PubMed ID: 24880045 [TBL] [Abstract][Full Text] [Related]
9. Decoding the covert shift of spatial attention from electroencephalographic signals permits reliable control of a brain-computer interface. Reichert C; Dürschmid S; Bartsch MV; Hopf JM; Heinze HJ; Hinrichs H J Neural Eng; 2020 Oct; 17(5):056012. PubMed ID: 32906103 [TBL] [Abstract][Full Text] [Related]
10. Effects of stimulus position on the classification of miniature asymmetric VEPs for brain-computer interfaces. Xu M; Zhou X; Xiao X; Wang Y; Jung TP; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5956-5959. PubMed ID: 31947204 [TBL] [Abstract][Full Text] [Related]
11. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming. Beveridge R; Wilson S; Coyle D Prog Brain Res; 2016; 228():329-53. PubMed ID: 27590974 [TBL] [Abstract][Full Text] [Related]
12. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces. Chang MH; Baek HJ; Lee SM; Park KS Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034 [TBL] [Abstract][Full Text] [Related]
13. A Four-Class Phase-Coded SSVEP BCI at 60Hz Using Refresh Rate. Jiang L; Wang Y; Pei W; Chen H Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6331-6334. PubMed ID: 31947290 [TBL] [Abstract][Full Text] [Related]
14. The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing. Ma T; Li H; Yang H; Lv X; Li P; Liu T; Yao D; Xu P J Neurosci Methods; 2017 Jan; 275():80-92. PubMed ID: 27845150 [TBL] [Abstract][Full Text] [Related]
15. Decoding of responses to mixed frequency and phase coded visual stimuli using multiset canonical correlation analysis. Suefusa K; Tanaka T Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1492-1495. PubMed ID: 28268609 [TBL] [Abstract][Full Text] [Related]
16. Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces. Waytowich NR; Krusienski DJ J Neural Eng; 2015 Jun; 12(3):036006. PubMed ID: 25875047 [TBL] [Abstract][Full Text] [Related]
17. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses. Lee MH; Williamson J; Lee YE; Lee SW Neuroreport; 2018 Oct; 29(15):1301-1308. PubMed ID: 30102642 [TBL] [Abstract][Full Text] [Related]
18. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential. Brumberg JS; Nguyen A; Pitt KM; Lorenz SD Disabil Rehabil Assist Technol; 2019 Apr; 14(3):241-249. PubMed ID: 29385839 [TBL] [Abstract][Full Text] [Related]
19. A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials. Jin J; Allison BZ; Wang X; Neuper C J Neurosci Methods; 2012 Apr; 205(2):265-76. PubMed ID: 22269596 [TBL] [Abstract][Full Text] [Related]
20. Neural decoding of code modulated visual evoked potentials by spatio-temporal inverse filtering for brain computer interfaces. Sato JI; Washizawa Y Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1484-1487. PubMed ID: 28268607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]