These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 31946541)
21. Optimising the classification of feature-based attention in frequency-tagged electroencephalography data. Renton AI; Painter DR; Mattingley JB Sci Data; 2022 Jun; 9(1):296. PubMed ID: 35697741 [TBL] [Abstract][Full Text] [Related]
22. An online EEG BCI based on covert visuospatial attention in absence of exogenous stimulation. Tonin L; Leeb R; Sobolewski A; Millán Jdel R J Neural Eng; 2013 Oct; 10(5):056007. PubMed ID: 23918205 [TBL] [Abstract][Full Text] [Related]
23. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies. Hwang HJ; Han CH; Lim JH; Kim YW; Choi SI; An KO; Lee JH; Cha HS; Hyun Kim S; Im CH Psychophysiology; 2017 Mar; 54(3):444-451. PubMed ID: 27914171 [TBL] [Abstract][Full Text] [Related]
24. Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders. Sousa T; Amaral C; Andrade J; Pires G; Nunes UJ; Castelo-Branco M J Neural Eng; 2017 Aug; 14(4):046026. PubMed ID: 28466825 [TBL] [Abstract][Full Text] [Related]
25. Comparison of steady-state visual and somatosensory evoked potentials for brain-computer interface control. Smith DJ; Varghese LA; Stepp CE; Guenther FH Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1234-7. PubMed ID: 25570188 [TBL] [Abstract][Full Text] [Related]
26. Complex sparse spatial filter for decoding mixed frequency and phase coded steady-state visually evoked potentials. Morikawa N; Tanaka T; Islam MR J Neurosci Methods; 2018 Jul; 304():1-10. PubMed ID: 29653130 [TBL] [Abstract][Full Text] [Related]
27. A Multifocal SSVEPs-based Brain-Computer Interface with Less Calibration Time Tang J; Xu M; Liu Z; Meng J; Chen S; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5975-5978. PubMed ID: 31947208 [TBL] [Abstract][Full Text] [Related]
28. A BCI-Based Study on the Relationship Between the SSVEP and Retinal Eccentricity in Overt and Covert Attention. Zhou Y; Hu L; Yu T; Li Y Front Neurosci; 2021; 15():746146. PubMed ID: 34970111 [TBL] [Abstract][Full Text] [Related]
29. Neurogaming With Motion-Onset Visual Evoked Potentials (mVEPs): Adults Versus Teenagers. Beveridge R; Wilson S; Callaghan M; Coyle D IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):572-581. PubMed ID: 30869627 [TBL] [Abstract][Full Text] [Related]
30. Decoding auditory attention from single-trial EEG for a high-efficiency brain-computer interface. An WW; Pei A; Noyce AL; Shinn-Cunningham B Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3456-3459. PubMed ID: 33018747 [TBL] [Abstract][Full Text] [Related]
31. A Brain-Computer Interface Based on Miniature-Event-Related Potentials Induced by Very Small Lateral Visual Stimuli. Xu M; Xiao X; Wang Y; Qi H; Jung TP; Ming D IEEE Trans Biomed Eng; 2018 May; 65(5):1166-1175. PubMed ID: 29683431 [TBL] [Abstract][Full Text] [Related]
32. Intracranial brain-computer interface spelling using localized visual motion response. Liu D; Xu X; Li D; Li J; Yu X; Ling Z; Hong B Neuroimage; 2022 Sep; 258():119363. PubMed ID: 35688315 [TBL] [Abstract][Full Text] [Related]
33. Robust detection of event-related potentials in a user-voluntary short-term imagery task. Lee MH; Williamson J; Kee YJ; Fazli S; Lee SW PLoS One; 2019; 14(12):e0226236. PubMed ID: 31877161 [TBL] [Abstract][Full Text] [Related]
34. A multi-target brain-computer interface based on code modulated visual evoked potentials. Liu Y; Wei Q; Lu Z PLoS One; 2018; 13(8):e0202478. PubMed ID: 30118504 [TBL] [Abstract][Full Text] [Related]
35. VEP-based brain-computer interfaces modulated by Golay complementary series for improving performance. Wei Q; Huang Y; Li M; Lu Z Technol Health Care; 2016 Apr; 24 Suppl 2():S541-9. PubMed ID: 27163316 [TBL] [Abstract][Full Text] [Related]
36. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface. Tu Y; Hung YS; Hu L; Huang G; Hu Y; Zhang Z Clin Neurophysiol; 2014 Dec; 125(12):2372-83. PubMed ID: 24794514 [TBL] [Abstract][Full Text] [Related]
37. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI). Lim JH; Hwang HJ; Han CH; Jung KY; Im CH J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484 [TBL] [Abstract][Full Text] [Related]
38. Utilizing Retinotopic Mapping for a Multi-Target SSVEP BCI With a Single Flicker Frequency. Maye A; Zhang D; Engel AK IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):1026-1036. PubMed ID: 28459691 [TBL] [Abstract][Full Text] [Related]
39. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding. Ge S; Jiang Y; Wang P; Wang H; Zheng W IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435 [TBL] [Abstract][Full Text] [Related]
40. Beyond maximum speed--a novel two-stimulus paradigm for brain-computer interfaces based on event-related potentials (P300-BCI). Kaufmann T; Kübler A J Neural Eng; 2014 Oct; 11(5):056004. PubMed ID: 25080406 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]