These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31946542)

  • 1. A two-step idle-state detection method for SSVEP BCI.
    Du J; Ke Y; Liu P; Liu W; Kong L; Wang N; Xu M; An X; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3095-3098. PubMed ID: 31946542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination between control and idle states in asynchronous SSVEP-based brain switches: a pseudo-key-based approach.
    Pan J; Li Y; Zhang R; Gu Z; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):435-43. PubMed ID: 23673460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing SSVEP-Based Brain-Computer Interface with Two-Step Task-Related Component Analysis.
    Lee HK; Choi YS
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of the idle state based on a novel IFB-OCN method for an asynchronous brain-computer interface.
    Zhang W; Zhou T; Zhao J; Ji B; Wu Z
    J Neurosci Methods; 2020 Jul; 341():108776. PubMed ID: 32479971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An idle state-detecting method based on transient visual evoked potentials for an asynchronous ERP-based BCI.
    Gong M; Xu G; Li M; Lin F
    J Neurosci Methods; 2020 May; 337():108670. PubMed ID: 32142909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the Performance of Individually Calibrated SSVEP-BCI by Task- Discriminant Component Analysis.
    Liu B; Chen X; Shi N; Wang Y; Gao S; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1998-2007. PubMed ID: 34543200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-temporal equalization multi-window algorithm for asynchronous SSVEP-based BCI.
    Yang C; Yan X; Wang Y; Chen Y; Zhang H; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34237711
    [No Abstract]   [Full Text] [Related]  

  • 10. Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis.
    Nakanishi M; Wang Y; Chen X; Wang YT; Gao X; Jung TP
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):104-112. PubMed ID: 28436836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of control or idle state with a likelihood ratio test in asynchronous SSVEP-based brain-computer interface systems.
    Merino LM; Nayak T; Hall G; Pack DJ; Yufei Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1568-1571. PubMed ID: 28268627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A review of researches on decoding algorithms of steady-state visual evoked potentials].
    Yang M; Jung TP; Han J; Xu M; Ming D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Apr; 39(2):416-425. PubMed ID: 35523564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.
    Cao L; Ju Z; Li J; Jian R; Jiang C
    J Neurosci Methods; 2015 Sep; 253():10-7. PubMed ID: 26014663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarity-constrained task-related component analysis for enhancing SSVEP detection.
    Sun Q; Chen M; Zhang L; Li C; Kang W
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 33946051
    [No Abstract]   [Full Text] [Related]  

  • 15. A comfortable steady state visual evoked potential stimulation paradigm using peripheral vision.
    Zhao X; Wang Z; Zhang M; Hu H
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33784640
    [No Abstract]   [Full Text] [Related]  

  • 16. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals.
    Zhou Y; He S; Huang Q; Li Y
    IEEE Trans Biomed Eng; 2020 Oct; 67(10):2881-2892. PubMed ID: 32070938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of User's Mental State Changes during Performing Brain-Computer Interface.
    Ko LW; Chikara RK; Lee YC; Lin WC
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SSVEP recognition using common feature analysis in brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Apr; 244():8-15. PubMed ID: 24727656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Training Data-Driven Canonical Correlation Analysis Algorithm for Designing Spatial Filters to Enhance Performance of SSVEP-Based BCIs.
    Wei Q; Zhu S; Wang Y; Gao X; Guo H; Wu X
    Int J Neural Syst; 2020 May; 30(5):2050020. PubMed ID: 32380925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.