These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31946606)

  • 1. Rapid Establishment Method of a Personalized Thermal Comfort Prediction Model
    Wu J; Shan C; Hu J; Sun J; Zhang A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3383-3386. PubMed ID: 31946606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants' heating behavior.
    Katić K; Li R; Zeiler W
    Appl Ergon; 2020 May; 85():103078. PubMed ID: 32174366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing thermal comfort prediction in high-speed trains through machine learning and physiological signals integration.
    Zhou W; Yang M; Yu X; Peng Y; Fan C; Xu D; Xiao Q
    J Therm Biol; 2024 Apr; 121():103828. PubMed ID: 38604115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study of the influence of anticipated control on human thermal sensation and thermal comfort.
    Zhou X; Ouyang Q; Zhu Y; Feng C; Zhang X
    Indoor Air; 2014 Apr; 24(2):171-7. PubMed ID: 23980928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of outdoor thermal environment on young Japanese females.
    Kurazumi Y; Ishii J; Kondo E; Fukagawa K; Bolashikov ZD; Sakoi T; Tsuchikawa T; Matsubara N; Horikoshi T
    Int J Biometeorol; 2014 Jul; 58(5):963-74. PubMed ID: 23729172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Psychological adaptation to thermal environments and its effects on thermal sensation.
    Zhuang L; Huang J; Li F; Zhong K
    Physiol Behav; 2022 Apr; 247():113724. PubMed ID: 35081370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human thermal sensation and comfort in a non-uniform environment with personalized heating.
    Deng Q; Wang R; Li Y; Miao Y; Zhao J
    Sci Total Environ; 2017 Feb; 578():242-248. PubMed ID: 27265737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The key local segments of human body for personalized heating and cooling.
    Wang L; Tian Y; Kim J; Yin H
    J Therm Biol; 2019 Apr; 81():118-127. PubMed ID: 30975408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal sensation prediction model for high-speed train occupants based on skin temperatures and skin wettedness.
    Zhou W; Yang M; Peng Y; Xiao Q; Fan C; Xu D
    Int J Biometeorol; 2024 Feb; 68(2):289-304. PubMed ID: 38047941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Physiological-Signal-Based Thermal Sensation Model for Indoor Environment Thermal Comfort Evaluation.
    Pao SL; Wu SY; Liang JM; Huang IJ; Guo LY; Wu WL; Liu YG; Nian SH
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.
    Schellen L; Loomans MG; de Wit MH; Olesen BW; van Marken Lichtenbelt WD
    Physiol Behav; 2012 Sep; 107(2):252-61. PubMed ID: 22877870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overall thermal sensation and comfort prediction with different model combinations: Cold and hot step-change environments in winter.
    Hu S; Ma H; He M; Wang F; Zhao Y; Li Y
    J Therm Biol; 2023 Apr; 113():103458. PubMed ID: 37055100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Case study of skin temperature and thermal perception in a hot outdoor environment.
    Pantavou K; Chatzi E; Theoharatos G
    Int J Biometeorol; 2014 Aug; 58(6):1163-73. PubMed ID: 23917485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personalized ventilation.
    Melikov AK
    Indoor Air; 2004; 14 Suppl 7():157-67. PubMed ID: 15330783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Term Thermal Comfort Monitoring via Wearable Sensing Techniques: Correlation between Environmental Metrics and Subjective Perception.
    Martins Gnecco V; Pigliautile I; Pisello AL
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perceived Indoor Environment and Occupants' Comfort in European "Modern" Office Buildings: The OFFICAIR Study.
    Sakellaris IA; Saraga DE; Mandin C; Roda C; Fossati S; de Kluizenaar Y; Carrer P; Dimitroulopoulou S; Mihucz VG; Szigeti T; Hänninen O; de Oliveira Fernandes E; Bartzis JG; Bluyssen PM
    Int J Environ Res Public Health; 2016 Apr; 13(5):. PubMed ID: 27120608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China.
    Wu Z; Li N; Cui H; Peng J; Chen H; Liu P
    Int J Environ Res Public Health; 2017 Sep; 14(10):. PubMed ID: 28934173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study on dynamic thermal responses and comfortable evaluations under bathing conditions.
    Luo M; Xu S; Tang Y; Yu H; Zhou X
    J Therm Biol; 2023 Jul; 115():103621. PubMed ID: 37379652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Thermal Sensation Based on Wrist Skin Temperatures.
    Sim SY; Koh MJ; Joo KM; Noh S; Park S; Kim YH; Park KS
    Sensors (Basel); 2016 Mar; 16(4):420. PubMed ID: 27023538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time regulation of room temperature based on individual thermal sensation using an online brain-computer interface.
    He X; Wu M; Li H; Liu S; Liu B; Qi H
    Indoor Air; 2022 Sep; 32(9):e13106. PubMed ID: 36168224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.