These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31946609)

  • 41. A Deep Neural Network-Based Pain Classifier Using a Photoplethysmography Signal.
    Lim H; Kim B; Noh GJ; Yoo SK
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669327
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.
    Li S; Jiang S; Jiang S; Wu J; Xiong W; Diao S
    Comput Math Methods Med; 2017; 2017():9468503. PubMed ID: 29250135
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Signal quality measures for pulse oximetry through waveform morphology analysis.
    Sukor JA; Redmond SJ; Lovell NH
    Physiol Meas; 2011 Mar; 32(3):369-84. PubMed ID: 21330696
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Noninvasive Blood Glucose Monitoring Using Spatiotemporal ECG and PPG Feature Fusion and Weight-Based Choquet Integral Multimodel Approach.
    Li J; Ma J; Omisore OM; Liu Y; Tang H; Ao P; Yan Y; Wang L; Nie Z
    IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):14491-14505. PubMed ID: 37289613
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Estimating blood pressure trends and the nocturnal dip from photoplethysmography.
    Radha M; de Groot K; Rajani N; Wong CCP; Kobold N; Vos V; Fonseca P; Mastellos N; Wark PA; Velthoven N; Haakma R; Aarts RM
    Physiol Meas; 2019 Feb; 40(2):025006. PubMed ID: 30699397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cross time-frequency analysis for combining information of several sources: application to estimation of spontaneous respiratory rate from photoplethysmography.
    Peláez-Coca MD; Orini M; Lázaro J; Bailón R; Gil E
    Comput Math Methods Med; 2013; 2013():631978. PubMed ID: 24363777
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monitoring of Heart Rate from Photoplethysmographic Signals Using a Samsung Galaxy Note8 in Underwater Environments.
    Askarian B; Jung K; Chong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31248022
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spot measurement of heart rate based on morphology of PhotoPlethysmoGraphic (PPG) signals.
    Madhan Mohan P; Nagarajan V; Vignesh JC
    J Med Eng Technol; 2017 Feb; 41(2):87-96. PubMed ID: 27609492
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimation of pulse rate from ambulatory PPG using ensemble empirical mode decomposition and adaptive thresholding.
    Pittara M; Theocharides T; Orphanidou C
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2916-2919. PubMed ID: 29060508
    [TBL] [Abstract][Full Text] [Related]  

  • 50. AND-rPPG: A novel denoising-rPPG network for improving remote heart rate estimation.
    Lokendra B; Puneet G
    Comput Biol Med; 2022 Feb; 141():105146. PubMed ID: 34942393
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robust Heart Rate Estimation During Physical Exercise Using Photoplethysmographic Signals.
    Motin MA; Karmakar CK; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():494-497. PubMed ID: 30440442
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modified photoplethysmography signal processing and analysis procedure for obtaining reliable stiffness index reflecting arteriosclerosis severity.
    Wu MT; Liu IF; Tzeng YH; Wang L
    Physiol Meas; 2022 Aug; 43(8):. PubMed ID: 35927978
    [No Abstract]   [Full Text] [Related]  

  • 53. A novel and low-complexity peak detection algorithm for heart rate estimation from low-amplitude photoplethysmographic (PPG) signals.
    Argüello Prada EJ; Serna Maldonado RD
    J Med Eng Technol; 2018 Nov; 42(8):569-577. PubMed ID: 30920315
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of acquisition frame-rate and video compression techniques on pulse-rate variability estimation from vPPG signal.
    Cerina L; Iozzia L; Mainardi L
    Biomed Tech (Berl); 2019 Feb; 64(1):53-65. PubMed ID: 29135450
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Discriminative Signatures for Remote-PPG.
    Wang W; den Brinker AC; de Haan G
    IEEE Trans Biomed Eng; 2020 May; 67(5):1462-1473. PubMed ID: 31484105
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An adaptive deep learning approach for PPG-based identification.
    Jindal V; Birjandtalab J; Pouyan MB; Nourani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6401-6404. PubMed ID: 28269713
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sinus or not: a new beat detection algorithm based on a pulse morphology quality index to extract normal sinus rhythm beats from wrist-worn photoplethysmography recordings.
    Papini GB; Fonseca P; Eerikäinen LM; Overeem S; Bergmans JWM; Vullings R
    Physiol Meas; 2018 Nov; 39(11):115007. PubMed ID: 30475748
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photoplethysmographic Waveform Versus Heart Rate Variability to Identify Low-Stress States: Attention Test.
    Pelaez MDC; Albalate MTL; Sanz AH; Valles MA; Gil E
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):1940-1951. PubMed ID: 30452382
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel feature ranking algorithm for biometric recognition with PPG signals.
    Reşit Kavsaoğlu A; Polat K; Recep Bozkurt M
    Comput Biol Med; 2014 Jun; 49():1-14. PubMed ID: 24705467
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cuffless and Continuous Blood Pressure Estimation From PPG Signals Using Recurrent Neural Networks.
    El Hajj C; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4269-4272. PubMed ID: 33018939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.