These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 31946710)
1. An Energy-Efficient Implantable-Neural-Stimulator System with Wireless Charging and Dynamic Voltage Output. Fu X; Mai S; Wang Z Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3835-3839. PubMed ID: 31946710 [TBL] [Abstract][Full Text] [Related]
2. An Energy-Efficient Wireless Power Receiver With One-Step Adiabatic-Bipolar-Supply Generating for Implantable Electrical Stimulation Applications. Cui K; Fan X; Ma Y IEEE Trans Biomed Circuits Syst; 2024 Oct; 18(5):1112-1122. PubMed ID: 38507375 [TBL] [Abstract][Full Text] [Related]
3. 13.56 MHz Triple Mode Rectifier Circuit With Extended Coupling Range for Wirelessly Powered Implantable Medical Devices. Engur Y; Yigit HA; Kulah H IEEE Trans Biomed Circuits Syst; 2021 Feb; 15(1):68-79. PubMed ID: 33360999 [TBL] [Abstract][Full Text] [Related]
4. A Digitally Dynamic Power Supply Technique for 16-Channel 12 V-Tolerant Stimulator Realized in a 0.18- μm 1.8-V/3.3-V Low-Voltage CMOS Process. Luo Z; Ker MD; Yang TY; Cheng WH IEEE Trans Biomed Circuits Syst; 2017 Oct; 11(5):1087-1096. PubMed ID: 28727562 [TBL] [Abstract][Full Text] [Related]
5. A novel wireless power and data transmission AC to DC converter for an implantable device. Liu JY; Tang KT Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1875-8. PubMed ID: 24110077 [TBL] [Abstract][Full Text] [Related]
6. Thermoelectric Energy Harvesting for Implantable Medical Devices. Janes T; Petrosky S; Buhr T; Karsilayan AI; Silva-Martinez J; Genzer D; Das V; Stotts L Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1547-1550. PubMed ID: 34891579 [TBL] [Abstract][Full Text] [Related]
7. A wirelessly programmable chip for multi-channel neural stimulation. Mai S; Wang Z; Zhang C; Wang Z Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6595-9. PubMed ID: 23367441 [TBL] [Abstract][Full Text] [Related]
8. An On-/Off-Time Sensing-Based Load-Adaptive Mode Control of Triple Mode Buck Converter for Implantable Medical Devices. Park W; Namgoong G; Choi E; Bien F IEEE Trans Biomed Circuits Syst; 2023 Jun; 17(3):585-597. PubMed ID: 37022053 [TBL] [Abstract][Full Text] [Related]
9. An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. Williams I; Constandinou T IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):129-39. PubMed ID: 23853295 [TBL] [Abstract][Full Text] [Related]
10. A feed-forward controlled AC-DC boost converter for biomedical implants. Jiang H; Lan D; Lin D; Zhang J; Liou S; Shahnasser H; Shen M; Harrison M; Roy S Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1675-8. PubMed ID: 23366230 [TBL] [Abstract][Full Text] [Related]
11. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Piech DK; Johnson BC; Shen K; Ghanbari MM; Li KY; Neely RM; Kay JE; Carmena JM; Maharbiz MM; Muller R Nat Biomed Eng; 2020 Feb; 4(2):207-222. PubMed ID: 32076132 [TBL] [Abstract][Full Text] [Related]
12. Wireless charing pillow for a fully implantable hearing aid: Design of a circular array coil based on finite element analysis for reducing magnetic weak zones. Lim HG; Kim JH; Shin DH; Woo ST; Seong KW; Lee JH; Kim MN; Wei Q; Cho JH Biomed Mater Eng; 2015; 26 Suppl 1():S1741-7. PubMed ID: 26405942 [TBL] [Abstract][Full Text] [Related]
13. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices. Hashemi SS; Sawan M; Savaria Y IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177 [TBL] [Abstract][Full Text] [Related]
14. An Implantable Optogenetic Neuro-Stimulator SoC With Extended Optical Pulse-Width Enabled by Supply-Variation-Immune Cycled Light-Toggling Stimulation. Yousefi T; Timonina K; Zoidl G; Kassiri H IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):557-569. PubMed ID: 35969561 [TBL] [Abstract][Full Text] [Related]
15. An ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducers. Rong Z; Zhang M; Ning Y; Pang W Sci Rep; 2022 Sep; 12(1):16174. PubMed ID: 36171230 [TBL] [Abstract][Full Text] [Related]
16. A Power-Efficient Multichannel Neural Stimulator Using High-Frequency Pulsed Excitation From an Unfiltered Dynamic Supply. van Dongen MN; Serdijn WA IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):61-71. PubMed ID: 25438324 [TBL] [Abstract][Full Text] [Related]
17. A wireless power interface for rechargeable battery operated neural recording implants. Li P; Principe JC; Bashirullah R Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6253-6. PubMed ID: 17946366 [TBL] [Abstract][Full Text] [Related]
18. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode. Shon A; Chu JU; Jung J; Kim H; Youn I Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29267230 [TBL] [Abstract][Full Text] [Related]
19. A Power-Efficient Wireless Capacitor Charging System Through an Inductive Link. Lee HM; Ghovanloo M IEEE Trans Circuits Syst II Express Briefs; 2013 Oct; 60(10):707-711. PubMed ID: 24678284 [TBL] [Abstract][Full Text] [Related]
20. A Fully Integrated, Power-Efficient, 0.07-2.08 mA, High-Voltage Neural Stimulator in a Standard CMOS Process. Palomeque-Mangut D; Rodríguez-Vázquez Á; Delgado-Restituto M Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]