These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 31946710)
21. A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems. Yan Lu ; Wing-Hung Ki IEEE Trans Biomed Circuits Syst; 2014 Jun; 8(3):334-44. PubMed ID: 23846494 [TBL] [Abstract][Full Text] [Related]
22. A Dual-Output Reconfigurable Shared-Inductor Boost-Converter/Current-Mode Inductive Power Management ASIC With 750% Extended Output-Power Range, Adaptive Switching Control, and Voltage-Power Regulation. Gougheri HS; Graybill P; Kiani M IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):1075-1086. PubMed ID: 31449030 [TBL] [Abstract][Full Text] [Related]
23. Characterization of simple wireless neurostimulators and sensors. Gulick DW; Towe BC Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3130-3. PubMed ID: 25570654 [TBL] [Abstract][Full Text] [Related]
25. PV-Assisted grid connected multi output electric vehicle charger with PV2V, G2V and PV2G functions. G R; Chokkalingam B; Munda JL PLoS One; 2024; 19(6):e0304637. PubMed ID: 38905302 [TBL] [Abstract][Full Text] [Related]
26. A Simple and Stable Load Control Algorithm for Time-Varying Harvested Energy in Miniaturized Implantable Devices. Bae C Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1149-1154. PubMed ID: 31946097 [TBL] [Abstract][Full Text] [Related]
27. Development of a battery-free ultrasonically powered functional electrical stimulator for movement restoration after paralyzing spinal cord injury. Alam M; Li S; Ahmed RU; Yam YM; Thakur S; Wang XY; Tang D; Ng S; Zheng YP J Neuroeng Rehabil; 2019 Mar; 16(1):36. PubMed ID: 30850027 [TBL] [Abstract][Full Text] [Related]
28. A Dual-Output Single-Stage Regulating Rectifier With PWM and Dual-Mode PFM Control for Wireless Powering of Biomedical Implants. Erfani R; Marefat F; Mohseni P IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1195-1206. PubMed ID: 33216720 [TBL] [Abstract][Full Text] [Related]
29. A 10-Bit 300 kS/s Reference-Voltage Regulator Free SAR ADC for Wireless-Powered Implantable Medical Devices. Yang Y; Zhou J; Liu X; Goh WL Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970814 [TBL] [Abstract][Full Text] [Related]
30. Active books: the design of an implantable stimulator that minimizes cable count using integrated circuits very close to electrodes. Liu X; Demosthenous A; Vanhoestenberghe A; Jiang D; Donaldson N IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):216-27. PubMed ID: 23853144 [TBL] [Abstract][Full Text] [Related]
31. Wearable wireless power systems for 'ME-BIT' magnetoelectric-powered bio implants. Alrashdan FT; Chen JC; Singer A; Avants BW; Yang K; Robinson JT J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229314 [No Abstract] [Full Text] [Related]
32. Current stimulator IC with adaptive supply regulator for visual prostheses. Ko H; Lee SM; Ahn JH; Hong SJ; Yoo HJ; Jung SW; Park SK; Cho DI J Biomed Nanotechnol; 2013 Jun; 9(6):992-7. PubMed ID: 23858963 [TBL] [Abstract][Full Text] [Related]
33. Efficiency Enhancement for an Inductive Wireless Power Transfer System by Optimizing the Impedance Matching Networks. Miao Z; Liu D; Gong C IEEE Trans Biomed Circuits Syst; 2017 Oct; 11(5):1160-1170. PubMed ID: 28922125 [TBL] [Abstract][Full Text] [Related]
34. Toward a fully integrated neurostimulator with inductive power recovery front-end. Mounaïm F; Sawan M IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):309-18. PubMed ID: 23853175 [TBL] [Abstract][Full Text] [Related]
35. An Energy-Efficient Optically-Enhanced Highly-Linear Implantable Wirelessly-Powered Bidirectional Optogenetic Neuro-Stimulator. Yousefi T; Taghadosi M; Dabbaghian A; Siu R; Grau G; Zoidl G; Kassiri H IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1274-1286. PubMed ID: 32976106 [TBL] [Abstract][Full Text] [Related]
36. An Integrated Wireless Power Management and Data Telemetry IC for High-Compliance-Voltage Electrical Stimulation Applications. Zhao J; Yao L; Xue RF; Li P; Je M; Xu YP IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):113-24. PubMed ID: 25910251 [TBL] [Abstract][Full Text] [Related]
37. Wireless Power Transmission for Implantable Medical Devices Using Focused Ultrasound and a Miniaturized 1-3 Piezoelectric Composite Receiving Transducer. Yi X; Zheng W; Cao H; Wang S; Feng X; Yang Z IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3592-3598. PubMed ID: 34357865 [TBL] [Abstract][Full Text] [Related]
38. [Design and Implementation of a Programmable Wireless Neural Stimulation System]. Zhang Z; Yu W; Tan Y; Zeng J; Xie G Zhongguo Yi Liao Qi Xie Za Zhi; 2016 Jan; 40(1):30-2. PubMed ID: 27197493 [TBL] [Abstract][Full Text] [Related]
39. A high-performance transcutaneous battery charger for medical implants. Artan N; Vanjani H; Vashist G; Fu Z; Bhakthavatsala S; Ludvig N; Medveczky G; Chao H Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1581-4. PubMed ID: 21096386 [TBL] [Abstract][Full Text] [Related]
40. Enhanced-efficiency Capacitive Coupling Intra-body Power Transfer Systems with 1.8 V Output for Neural Interfaces. Han C; Lin C; Mao J; Yu S; Zhang Z Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083244 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]