These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31946771)

  • 1. Simulation of Exoskeleton Alignment and its Effect on the Knee Extensor and Flexor Muscles.
    MajidiRad A; Yihun Y; Desai J; Hakansson NA
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4093-4096. PubMed ID: 31946771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of a Passive Knee Exoskeleton for Vertical Jump Using Optimal Control.
    Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2859-2868. PubMed ID: 33226951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a Multi-Joint Passive Exoskeleton for Vertical Jumping Using Optimal Control.
    Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2815-2823. PubMed ID: 36155480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing effects of exoskeleton misalignment on knee joint load during swing using an instrumented leg simulator.
    Bessler-Etten J; Schaake L; Prange-Lasonder GB; Buurke JH
    J Neuroeng Rehabil; 2022 Jan; 19(1):13. PubMed ID: 35090501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Assistance Using a Bilateral Robotic Knee Exoskeleton on Tibiofemoral Force Using a Neuromuscular Model.
    McLain BJ; Lee D; Mulrine SC; Young AJ
    Ann Biomed Eng; 2022 Jun; 50(6):716-727. PubMed ID: 35344119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of asymmetrical gait induced by unilateral knee brace on the knee flexor and extensor muscles.
    Yap YT; Gouwanda D; Gopalai AA; Chong YZ
    Med Biol Eng Comput; 2021 Mar; 59(3):711-720. PubMed ID: 33625670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sagittal plane prosthetic alignment on standing trans-tibial amputee knee loads.
    Blumentritt S; Schmalz T; Jarasch R; Schneider M
    Prosthet Orthot Int; 1999 Dec; 23(3):231-8. PubMed ID: 10890598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Assistance Timing in Knee Extensor Muscle Activation During Sit-to-Stand Using a Bilateral Robotic Knee Exoskeleton.
    Choi G; Lee D; Kang I; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4879-4882. PubMed ID: 34892302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of optimisation methods and knee joint degrees of freedom on muscle force predictions during single-leg hop landings.
    Mokhtarzadeh H; Perraton L; Fok L; Muñoz MA; Clark R; Pivonka P; Bryant AL
    J Biomech; 2014 Sep; 47(12):2863-8. PubMed ID: 25129166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of movement speed and joint position on knee flexor torque in healthy and post-surgical subjects.
    Osternig LR; James CR; Bercades D
    Eur J Appl Physiol Occup Physiol; 1999 Jul; 80(2):100-6. PubMed ID: 10408319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape synthesis of an assistive knee exoskeleton device to support knee joint and rehabilitate gait.
    Singh R; Chaudhary H; Singh AK
    Disabil Rehabil Assist Technol; 2019 Jul; 14(5):462-470. PubMed ID: 30044676
    [No Abstract]   [Full Text] [Related]  

  • 16. Controlling a Lower-Leg Exoskeleton Using Voltage and Current Variation Signals of a DC Motor Mounted at the Knee Joint.
    Al-Ayyad M; Moh'd BA; Qasem N; Al-Takrori M
    J Med Syst; 2019 Jun; 43(7):229. PubMed ID: 31197587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Exo4Work shoulder exoskeleton effectively reduces muscle and joint loading during simulated occupational tasks above shoulder height.
    van der Have A; Rossini M; Rodriguez-Guerrero C; Van Rossom S; Jonkers I
    Appl Ergon; 2022 Sep; 103():103800. PubMed ID: 35598416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of Exoskeleton Assisted Knee Extension on Lower-Extremity Gait Kinematics, Kinetics, and Muscle Activity in Children with Cerebral Palsy.
    Lerner ZF; Damiano DL; Bulea TC
    Sci Rep; 2017 Oct; 7(1):13512. PubMed ID: 29044202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive Knee Exoskeleton Increases Vertical Jump Height.
    Ben-David C; Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1796-1805. PubMed ID: 35776830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Knee Extensor Muscle Action Induces an Increase in Voluntary Force Generation of Plantar Flexor Muscles.
    Suzuki T; Shioda K; Kinugasa R; Fukashiro S
    J Strength Cond Res; 2017 Feb; 31(2):365-371. PubMed ID: 27243914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.