These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31946773)

  • 1. Model-Based Estimation of Ankle Joint Stiffness During Dynamic Tasks: a Validation-Based Approach.
    Cop CP; Durandau G; Esteban AM; van 't Veld RC; Schouten AC; Sartori M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4104-4107. PubMed ID: 31946773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Time-Varying Ankle Joint Stiffness Under Dynamic Conditions via System Identification Techniques.
    Esteban AM; van 't Veld RC; Cop CP; Durandau G; Sartori M; Schouten AC
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2119-2122. PubMed ID: 31946319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion.
    Sartori M; Maculan M; Pizzolato C; Reggiani M; Farina D
    J Neurophysiol; 2015 Oct; 114(4):2509-27. PubMed ID: 26245321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trunk muscle contributions of to L4-5 joint rotational stiffness following sudden trunk lateral bend perturbations.
    Cort JA; Dickey JP; Potvin JR
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1334-42. PubMed ID: 24148963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a mechatronic platform and validation of methods for estimating ankle stiffness during the stance phase of walking.
    Rouse EJ; Hargrove LJ; Perreault EJ; Peshkin MA; Kuiken TA
    J Biomech Eng; 2013 Aug; 135(8):81009. PubMed ID: 23719922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-varying identification of ankle dynamic joint stiffness during movement with constant muscle activation.
    Guarin DL; Kearney RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6740-3. PubMed ID: 26737840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Instrument-assisted Soft Tissue Mobilization on Musculoskeletal Properties.
    Ikeda N; Otsuka S; Kawanishi Y; Kawakami Y
    Med Sci Sports Exerc; 2019 Oct; 51(10):2166-2172. PubMed ID: 31083046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subspace methods for identification of human ankle joint stiffness.
    Zhao Y; Westwick DT; Kearney RE
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3039-48. PubMed ID: 21078569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knee and ankle joint stiffness in sprint running.
    Kuitunen S; Komi PV; Kyröläinen H
    Med Sci Sports Exerc; 2002 Jan; 34(1):166-73. PubMed ID: 11782663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lower limb joint stiffness and muscle co-contraction adaptations to instability footwear during locomotion.
    Apps C; Sterzing T; O'Brien T; Lake M
    J Electromyogr Kinesiol; 2016 Dec; 31():55-62. PubMed ID: 27684529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model.
    de Oliveira LF; Menegaldo LL
    J Biomech; 2010 Oct; 43(14):2816-21. PubMed ID: 20541763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization.
    Sartori M; Farina D; Lloyd DG
    J Biomech; 2014 Nov; 47(15):3613-21. PubMed ID: 25458151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive Stiffness Reduction in Human Ankle Joint Mechanical Impedance When Exposed to Externally Imposed Movement.
    Zhi L; Rouse EJ; Reissman T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():127-131. PubMed ID: 31374618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based estimation of knee stiffness.
    Pfeifer S; Vallery H; Hardegger M; Riener R; Perreault EJ
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2604-12. PubMed ID: 22801482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Musculoskeletal modelling of human ankle complex: Estimation of ankle joint moments.
    Jamwal PK; Hussain S; Tsoi YH; Ghayesh MH; Xie SQ
    Clin Biomech (Bristol, Avon); 2017 May; 44():75-82. PubMed ID: 28351736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a parametric, discrete-time model of ankle stiffness.
    Guarin DL; Jalaleddini K; Kearney RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5065-70. PubMed ID: 24110874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based estimation of active knee stiffness.
    Pfeifer S; Hardegger M; Vallery H; List R; Foresti M; Riener R; Perreault EJ
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975474. PubMed ID: 22275672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of proprioceptive neuromuscular facilitation stretching on stiffness and force-producing characteristics of the ankle in active women.
    Rees SS; Murphy AJ; Watsford ML; McLachlan KA; Coutts AJ
    J Strength Cond Res; 2007 May; 21(2):572-7. PubMed ID: 17530973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The center of pressure and ankle muscle co-contraction in response to anterior-posterior perturbations.
    Kim D; Hwang JM
    PLoS One; 2018; 13(11):e0207667. PubMed ID: 30496202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of limiting ankle-dorsiflexion range of motion on lower extremity kinematics and muscle-activation patterns during a squat.
    Macrum E; Bell DR; Boling M; Lewek M; Padua D
    J Sport Rehabil; 2012 May; 21(2):144-50. PubMed ID: 22100617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.