These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31946832)

  • 1. Overvoltage Protection Circuits for Ultrasonically Powered Implantable Microsystems.
    Rashidi A; Laursen K; Hosseini S; Moradi F
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4354-4358. PubMed ID: 31946832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A High-Resolution Ultrasonically Powered And Controlled Optogenetic Stimulator With A Novel Fully Analog Time To Current Converter.
    Rashidi A; Laursen K; Hosseini S; Moradi F
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3411-3414. PubMed ID: 33018736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Implantable Ultrasonically Powered System for Optogenetic Stimulation with Power-Efficient Active Rectifier and Charge-Reuse Capability.
    Rashidi A; Laursen K; Hosseini S; Huynh HA; Moradi F
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1362-1371. PubMed ID: 31647446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonically Powered Compact Implantable Dust for Optogenetics.
    Laursen K; Rashidi A; Hosseini S; Mondal T; Corbett B; Moradi F
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):583-594. PubMed ID: 32406843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultrasonically controlled switching system for power management in implantable devices.
    Zhou J; Kim A; Ziaie B
    Biomed Microdevices; 2018 May; 20(2):42. PubMed ID: 29789965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel wireless power and data transmission AC to DC converter for an implantable device.
    Liu JY; Tang KT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1875-8. PubMed ID: 24110077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 10-Bit 300 kS/s Reference-Voltage Regulator Free SAR ADC for Wireless-Powered Implantable Medical Devices.
    Yang Y; Zhou J; Liu X; Goh WL
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
    Hashemi SS; Sawan M; Savaria Y
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully-implantable, multi-channel, microstimulator with tracking supply ribbon and energy recovery.
    Rashidi A; Yazdani N; Sodagar AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1818-1821. PubMed ID: 28268680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Ceramic Packages for Ultrasonically Coupled Implantable Medical Devices.
    Shen K; Maharbiz MM
    IEEE Trans Biomed Eng; 2020 Aug; 67(8):2230-2240. PubMed ID: 31825858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultrasonically powered implantable device for targeted drug delivery.
    Charthad J; Baltsavias S; Samanta D; Ting Chia Chang ; Weber MJ; Hosseini-Nassab N; Zare RN; Arbabian A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():541-544. PubMed ID: 28324933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 65nm CMOS low-power MedRadio-band integer-N cascaded phase-locked loop for implantable medical systems.
    Wang YX; Chen WM; Wu CY
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():642-5. PubMed ID: 25570041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical devices.
    Sanni A; Vilches A; Toumazou C
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):297-308. PubMed ID: 23853174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A low-power 13.56 MHz RF front-end circuit for implantable biomedical devices.
    Lee SY; Hong JH; Hsieh CH; Liang MC; Kung JY
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):256-65. PubMed ID: 23853325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation, Design, and Test of a Dual-Differential D-Dot Overvoltage Sensor Based on the Field-Circuit Coupling Method.
    Zhao P; Wang J; Wang Q; Xiao Q; Zhang R; Ou S; Tao Y
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless Ultrasonic Communication for Biomedical Injectable Implantable Device.
    Jaafar B; Soltan A; Neasham J; Degenaar P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4024-4027. PubMed ID: 31946754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Programmable Implantable Microstimulator SoC With Wireless Telemetry: Application in Closed-Loop Endocardial Stimulation for Cardiac Pacemaker.
    Shuenn-Yuh Lee ; Su MY; Ming-Chun Liang ; You-Yin Chen ; Cheng-Han Hsieh ; Chung-Min Yang ; Hsin-Yi Lai ; Jou-Wei Lin ; Qiang Fang
    IEEE Trans Biomed Circuits Syst; 2011 Dec; 5(6):511-22. PubMed ID: 23852549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Optimization of Ultrasonic Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants.
    Meng M; Kiani M
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):98-107. PubMed ID: 27662684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CMOS clock and data recovery circuit for intraocular microsystems.
    Prämassing F; Püttjer D; Buss R; Jäger D
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():167-70. PubMed ID: 12451805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Redundancy Reduction in Multi-Channel Implantable Neural Recording Microsystems.
    Khazaei Y; Shahkooh AA; Sodagar AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():898-901. PubMed ID: 33018129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.