These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31946832)

  • 21. Spatial Redundancy Reduction in Multi-Channel Implantable Neural Recording Microsystems.
    Khazaei Y; Shahkooh AA; Sodagar AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():898-901. PubMed ID: 33018129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy-efficient implantable transmitter for restenosis monitoring with intelligent-stents.
    Rivas D; Miguel JA; Lechuga Y; Allende MA; Martinez M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3323-6. PubMed ID: 26737003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-Voltage and Low-Power True-Single-Phase 16-Transistor Flip-Flop Design.
    Lin JF; Hong ZJ; Wu JT; Tung XY; Yang CH; Yen YC
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gastric Seed: Towards Distributed Ultrasonically Interrogated Millimeter-Sized Implants for Large-Scale Gastric Electrical-Wave Recording.
    Meng M; Kiani M
    IEEE Trans Circuits Syst II Express Briefs; 2019 May; 66(5):783-787. PubMed ID: 31866772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noninvasive control of the power transferred to an implanted device by an ultrasonic transcutaneous energy transfer link.
    Shmilovitz D; Ozeri S; Wang CC; Spivak B
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):995-1004. PubMed ID: 24013825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of Tunable Ultrasonic Receivers for Efficient Powering of Implantable Medical Devices With Reconfigurable Power Loads.
    Chang TC; Weber MJ; Wang ML; Charthad J; Khuri-Yakub BP; Arbabian A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1554-1562. PubMed ID: 27623580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-Ring Ultrasonic Transducer on a Single Piezoelectric Disk For Powering Biomedical Implants.
    Hosseini S; Laursen K; Rashidi A; Moradi F
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3827-3830. PubMed ID: 31946708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel MR-compatible sensor to assess active medical device safety: stimulation monitoring, rectified radio frequency pulses, and gradient-induced voltage measurements.
    Barbier T; Aissani S; Weber N; Pasquier C; Felblinger J
    MAGMA; 2018 Oct; 31(5):677-688. PubMed ID: 29603047
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Inductive Power and Data Telemetry Subsystem With Fast Transient Low Dropout Regulator for Biomedical Implants.
    Lin YP; Tang KT
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):435-44. PubMed ID: 26285218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High frequency input impedance modeling of low-voltage residential installations - influence on lightning overvoltage simulations results.
    Bassi W
    Springerplus; 2014; 3():690. PubMed ID: 26034685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A remotely powered implantable biomedical system with location detector.
    Kilinc EG; Ghanad MA; Maloberti F; Dehollain C
    IEEE Trans Biomed Circuits Syst; 2015 Feb; 9(1):113-23. PubMed ID: 24988596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New architecture for wireless implantable neural recording microsystems based on frequency-division multiplexing.
    Rajabi-Tavakkol A; Sodagar AM; Refan MH
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6449-52. PubMed ID: 21096715
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Ultrasonically Powered Wireless System for In Vivo Gastric Slow-Wave Recording.
    Meng M; Graybill P; Ramos RL; Javan-Khoshkholgh A; Farajidavar A; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():7064-7067. PubMed ID: 31947464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. End-to-End Design of Efficient Ultrasonic Power Links for Scaling Towards Submillimeter Implantable Receivers.
    Chang TC; Weber MJ; Charthad J; Baltsavias S; Arbabian A
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1100-1111. PubMed ID: 30235147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a battery-free ultrasonically powered functional electrical stimulator for movement restoration after paralyzing spinal cord injury.
    Alam M; Li S; Ahmed RU; Yam YM; Thakur S; Wang XY; Tang D; Ng S; Zheng YP
    J Neuroeng Rehabil; 2019 Mar; 16(1):36. PubMed ID: 30850027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Omnidirectional Ultrasonic Powering for Millimeter-Scale Implantable Devices.
    Song SH; Kim A; Ziaie B
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2717-23. PubMed ID: 26080376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Bootstrapped Comparator-Switched Active Rectifying Circuit for Wirelessly Powered Integrated Miniaturized Energy Sensing Systems.
    Gong CA; Li SW; Shiue MT
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Power flow control based solely on slow feedback loop for heart pump applications.
    Wang B; Hu AP; Budgett D
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):279-86. PubMed ID: 23853149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band.
    Yang CL; Zheng GT
    Sensors (Basel); 2015 Nov; 15(11):29467-77. PubMed ID: 26610508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A wireless batteryless deep-seated implantable ultrasonic pulser-receiver powered by magnetic coupling.
    Tang SC; Jolesz FA; Clement GT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1211-21. PubMed ID: 21693403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.