These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31946851)

  • 1. Passive Knee Assistance Affects Whole-Body Biomechanics During Sit-to-Stand.
    Seko S; Matthew RP; Riemer R
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4440-4444. PubMed ID: 31946851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and characterization of a torque-controllable actuator for knee assistance during sit-to-stand.
    Shepherd MK; Rouse EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2228-2231. PubMed ID: 28324960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knee extensor torque and BMI differently relate to sit-to-stand strategies in obesity.
    Bollinger LM; Walaszek MC; Seay RF; Ransom AL
    Clin Biomech (Bristol, Avon); 2019 Feb; 62():28-33. PubMed ID: 30660055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of movement speed on lower and upper body biomechanics during sit-to-stand-to-sit transfers: Self-selected speed vs. fast imposed speed.
    Wang J; Severin AC; Siddicky SF; Barnes CL; Mannen EM
    Hum Mov Sci; 2021 Jun; 77():102797. PubMed ID: 33848920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements.
    Yoshioka S; Nagano A; Himeno R; Fukashiro S
    Biomed Eng Online; 2007 Jul; 6():26. PubMed ID: 17608922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of unilateral grab rail assistance on the sit-to-stand performance of older aged adults.
    O'Meara DM; Smith RM
    Hum Mov Sci; 2006 Apr; 25(2):257-74. PubMed ID: 16458382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical analysis of sit-to-stand movement in normal and obese subjects.
    Sibella F; Galli M; Romei M; Montesano A; Crivellini M
    Clin Biomech (Bristol, Avon); 2003 Oct; 18(8):745-50. PubMed ID: 12957561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving stand-to-sit maneuver for individuals with spinal cord injury.
    Chang SR; Nandor MJ; Kobetic R; Foglyano KM; Quinn RD; Triolo RJ
    J Neuroeng Rehabil; 2016 Mar; 13():27. PubMed ID: 26979386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Support torques during simulated sit-to-stand movements.
    Gillette JC; Stevermer CA; Raina S; Derrick TR
    Biomed Sci Instrum; 2005; 41():7-12. PubMed ID: 15850074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of the lower extremity joint motions on the total body motion in sit-to-stand movement.
    Yu B; Holly-Crichlow N; Brichta P; Reeves GR; Zablotny CM; Nawoczenski DA
    Clin Biomech (Bristol, Avon); 2000 Jul; 15(6):449-55. PubMed ID: 10771124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sit-to-stand movement in children with hemiplegic cerebral palsy: relationship with knee extensor torque and social participation.
    dos Santos AN; Pavão SL; Santiago PR; Salvini Tde F; Rocha NA
    Res Dev Disabil; 2013 Jun; 34(6):2023-32. PubMed ID: 23584182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of sit-to-stand movements.
    Kotake T; Dohi N; Kajiwara T; Sumi N; Koyama Y; Miura T
    Arch Phys Med Rehabil; 1993 Oct; 74(10):1095-9. PubMed ID: 8215863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related change in sit-to-stand power in Japanese women aged 50 years or older.
    Kanehisa H; Fukunaga T
    J Physiol Anthropol; 2014 Aug; 33(1):26. PubMed ID: 25129071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of sit-to-stand in typically developing children aged 4 to 12 years: Movement time, trunk and lower extremity joint angles, and joint moments.
    Mapaisansin P; Suriyaamarit D; Boonyong S
    Gait Posture; 2020 Feb; 76():14-21. PubMed ID: 31707306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-gain observer-based nonlinear control scheme for biomechanical sit to stand movement in the presence of sensory feedback delays.
    Sultan N; Mughal AM; Islam MNU; Malik FM
    PLoS One; 2021; 16(8):e0256049. PubMed ID: 34383831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint torques during sit-to-stand in healthy subjects and people with Parkinson's disease.
    Mak MK; Levin O; Mizrahi J; Hui-Chan CW
    Clin Biomech (Bristol, Avon); 2003 Mar; 18(3):197-206. PubMed ID: 12620782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and evaluation of an orthotic knee-extension assist.
    Spring AN; Kofman J; Lemaire ED
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):678-87. PubMed ID: 22695361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stand-to-sit kinematic changes during pregnancy correspond with reduced sagittal plane hip motion.
    Catena RD; Bailey JP; Campbell N; Music HE
    Clin Biomech (Bristol, Avon); 2019 Jul; 67():107-114. PubMed ID: 31100701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of the sit-to-stand movement: a review.
    Janssen WG; Bussmann HB; Stam HJ
    Phys Ther; 2002 Sep; 82(9):866-79. PubMed ID: 12201801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sit-to-stand movement analysis in obese subjects.
    Galli M; Crivellini M; Sibella F; Montesano A; Bertocco P; Parisio C
    Int J Obes Relat Metab Disord; 2000 Nov; 24(11):1488-92. PubMed ID: 11126346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.