These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31946859)

  • 1. Automated Classification of Airborne Pollen using Neural Networks.
    Schiele J; Damialis A; Rabe F; Schmitt M; Glaser M; Haring F; Brunner JO; Bauer B; Schuller B; Traidl-Hoffmann C
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4474-4478. PubMed ID: 31946859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards automatic airborne pollen monitoring: From commercial devices to operational by mitigating class-imbalance in a deep learning approach.
    Schaefer J; Milling M; Schuller BW; Bauer B; Brunner JO; Traidl-Hoffmann C; Damialis A
    Sci Total Environ; 2021 Nov; 796():148932. PubMed ID: 34273827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting Airborne Pollen Using an Automatic, Real-Time Monitoring System: Evidence from Two Sites.
    Plaza MP; Kolek F; Leier-Wirtz V; Brunner JO; Traidl-Hoffmann C; Damialis A
    Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An operational robotic pollen monitoring network based on automatic image recognition.
    Oteros J; Weber A; Kutzora S; Rojo J; Heinze S; Herr C; Gebauer R; Schmidt-Weber CB; Buters JTM
    Environ Res; 2020 Dec; 191():110031. PubMed ID: 32814105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural networks for increased accuracy of allergenic pollen monitoring.
    Polling M; Li C; Cao L; Verbeek F; de Weger LA; Belmonte J; De Linares C; Willemse J; de Boer H; Gravendeel B
    Sci Rep; 2021 May; 11(1):11357. PubMed ID: 34059743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying Deep Neural Networks and Ensemble Machine Learning Methods to Forecast Airborne
    Zewdie GK; Lary DJ; Levetin E; Garuma GF
    Int J Environ Res Public Health; 2019 Jun; 16(11):. PubMed ID: 31167504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Earlier Flowering of
    Kolek F; Plaza MDP; Leier-Wirtz V; Friedmann A; Traidl-Hoffmann C; Damialis A
    Int J Environ Res Public Health; 2021 Sep; 18(19):. PubMed ID: 34639625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of atmospheric Poaceae pollen concentration using a neural network applied to a coastal Atlantic climate region.
    Rodríguez-Rajo FJ; Astray G; Ferreiro-Lage JA; Aira MJ; Jato-Rodriguez MV; Mejuto JC
    Neural Netw; 2010 Apr; 23(3):419-25. PubMed ID: 19604673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing a pollen proxy from low-cost Optical Particle Counter (OPC) data processed with Neural Networks and Random Forests.
    Mills SA; Bousiotis D; Maya-Manzano JM; Tummon F; MacKenzie AR; Pope FD
    Sci Total Environ; 2023 May; 871():161969. PubMed ID: 36754323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building an automatic pollen monitoring network (ePIN): Selection of optimal sites by clustering pollen stations.
    Oteros J; Sofiev M; Smith M; Clot B; Damialis A; Prank M; Werchan M; Wachter R; Weber A; Kutzora S; Heinze S; Herr CEW; Menzel A; Bergmann KC; Traidl-Hoffmann C; Schmidt-Weber CB; Buters JTM
    Sci Total Environ; 2019 Oct; 688():1263-1274. PubMed ID: 31726556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing resolution of airborne pollen forecasting at a discrete sampled area in the southwest Mediterranean Basin.
    Picornell A; Oteros J; Trigo MM; Gharbi D; Docampo Fernández S; Melgar Caballero M; Toro FJ; García-Sánchez J; Ruiz-Mata R; Cabezudo B; Recio M
    Chemosphere; 2019 Nov; 234():668-681. PubMed ID: 31234084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human exposure to airborne pollen and relationships with symptoms and immune responses: Indoors versus outdoors, circadian patterns and meteorological effects in alpine and urban environments.
    Damialis A; Häring F; Gökkaya M; Rauer D; Reiger M; Bezold S; Bounas-Pyrros N; Eyerich K; Todorova A; Hammel G; Gilles S; Traidl-Hoffmann C
    Sci Total Environ; 2019 Feb; 653():190-199. PubMed ID: 30408667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of neural networks and time series analysis to forecast airborne Parietaria pollen presence in the Atlantic coastal regions.
    Valencia JA; Astray G; Fernández-González M; Aira MJ; Rodríguez-Rajo FJ
    Int J Biometeorol; 2019 Jun; 63(6):735-745. PubMed ID: 30778684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Airborne castanea pollen forecasting model for ecological and allergological implementation.
    Astray G; Fernández-González M; Rodríguez-Rajo FJ; López D; Mejuto JC
    Sci Total Environ; 2016 Apr; 548-549():110-121. PubMed ID: 26802339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the start, peak and end of the Betula pollen season in Bavaria, Germany.
    Picornell A; Buters J; Rojo J; Traidl-Hoffmann C; Damialis A; Menzel A; Bergmann KC; Werchan M; Schmidt-Weber C; Oteros J
    Sci Total Environ; 2019 Nov; 690():1299-1309. PubMed ID: 31470492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Perspectives for nationwide pollen monitoring in Germany].
    Fachübergreifender Arbeitskreis „Bundesweites Pollenmonitoring“
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2019 May; 62(5):652-661. PubMed ID: 31016363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamics of pollen seasons of the most allergenic plants - 15-year observations in Warsaw.
    Lipiec A; Rapiejko P; Furmańczyk K; Jurkiewicz D
    Otolaryngol Pol; 2018 Sep; 72(6):44-53. PubMed ID: 30647196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: a retrospective data analysis.
    Ziska LH; Makra L; Harry SK; Bruffaerts N; Hendrickx M; Coates F; Saarto A; Thibaudon M; Oliver G; Damialis A; Charalampopoulos A; Vokou D; Heiđmarsson S; Guđjohnsen E; Bonini M; Oh JW; Sullivan K; Ford L; Brooks GD; Myszkowska D; Severova E; Gehrig R; Ramón GD; Beggs PJ; Knowlton K; Crimmins AR
    Lancet Planet Health; 2019 Mar; 3(3):e124-e131. PubMed ID: 30904111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying patterns of airborne pollen distribution using a synoptic climatology approach.
    Paschalidou AK; Psistaki K; Charalampopoulos A; Vokou D; Kassomenos P; Damialis A
    Sci Total Environ; 2020 Apr; 714():136625. PubMed ID: 32018949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quercus pollen season dynamics in the Iberian peninsula: response to meteorological parameters and possible consequences of climate change.
    Garcia-Mozo H; Galan C; Jato V; Belmonte J; de la Guardia C; Fernandez D; Gutierrez M; Aira M; Roure J; Ruiz L; Trigo M; Dominguez-Vilches E
    Ann Agric Environ Med; 2006; 13(2):209-24. PubMed ID: 17195993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.