BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31946862)

  • 1. Performance Evaluation of a Generative Adversarial Network for Deblurring Mobile-phone Cervical Images.
    Ganesan P; Xue Z; Singh S; Long R; Ghoraani B; Antani S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4487-4490. PubMed ID: 31946862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image Motion Deblurring Based on Deep Residual Shrinkage and Generative Adversarial Networks.
    Jiang W; Liu A
    Comput Intell Neurosci; 2022; 2022():5605846. PubMed ID: 35096042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refinement of image quality in panoramic radiography using a generative adversarial network.
    Kim HS; Ha EG; Lee A; Choi YJ; Jeon KJ; Han SS; Lee C
    Dentomaxillofac Radiol; 2023 Jul; 52(5):20230007. PubMed ID: 37129509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeephESC 2.0: Deep Generative Multi Adversarial Networks for improving the classification of hESC.
    Theagarajan R; Bhanu B
    PLoS One; 2019; 14(3):e0212849. PubMed ID: 30840685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generative adversarial network based data augmentation to improve cervical cell classification model.
    Yu S; Zhang S; Wang B; Dun H; Xu L; Huang X; Shi E; Feng X
    Math Biosci Eng; 2021 Feb; 18(2):1740-1752. PubMed ID: 33757208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SharpGAN: Dynamic Scene Deblurring Method for Smart Ship Based on Receptive Field Block and Generative Adversarial Networks.
    Feng H; Guo J; Xu H; Ge SS
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
    P B S; Faruqi F; K S H; Kudva R
    Asian Pac J Cancer Prev; 2019 Nov; 20(11):3447-3456. PubMed ID: 31759371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using super-resolution generative adversarial network models and transfer learning to obtain high resolution digital periapical radiographs.
    Moran MBH; Faria MDB; Giraldi GA; Bastos LF; Conci A
    Comput Biol Med; 2021 Feb; 129():104139. PubMed ID: 33271400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Stage Network for Event-Based Video Deblurring with Residual Hint Attention.
    Kim J; Jung YJ
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information.
    Tang C; Li J; Wang L; Li Z; Jiang L; Cai A; Zhang W; Liang N; Li L; Yan B
    Comput Math Methods Med; 2019; 2019():8639825. PubMed ID: 31885686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pap-smear analysis tool (PAT) for detection of cervical cancer from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Biomed Eng Online; 2019 Feb; 18(1):16. PubMed ID: 30755214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting brain lesions in suspected acute ischemic stroke with CT-based synthetic MRI using generative adversarial networks.
    Hu N; Zhang T; Wu Y; Tang B; Li M; Song B; Gong Q; Wu M; Gu S; Lui S
    Ann Transl Med; 2022 Jan; 10(2):35. PubMed ID: 35282087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Super-resolution construction of intravascular ultrasound images using generative adversarial networks].
    Wu Y; Yang F; Huang J; Liu Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Jan; 39(1):82-87. PubMed ID: 30692071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Deblurring Algorithm for Blurred Images Caused by Patient Motion in Radiography].
    Ohashi K; Ishida T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2016; 72(10):961-969. PubMed ID: 27760907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adversarial Spatio-Temporal Learning for Video Deblurring.
    Zhang K; Luo W; Zhong Y; Ma L; Liu W; Li H
    IEEE Trans Image Process; 2019 Jan; 28(1):291-301. PubMed ID: 30176588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image Deblurring Using Multi-Stream Bottom-Top-Bottom Attention Network and Global Information-Based Fusion and Reconstruction Network.
    Zhou Q; Ding M; Zhang X
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel DenseNet Generative Adversarial Network for Heterogenous Low-Light Image Enhancement.
    Zhang J; Wu C; Yu X; Lei X
    Front Neurorobot; 2021; 15():700011. PubMed ID: 34276333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporally downsampled cerebral CT perfusion image restoration using deep residual learning.
    Zhu H; Tong D; Zhang L; Wang S; Wu W; Tang H; Chen Y; Luo L; Zhu J; Li B
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):193-201. PubMed ID: 31673961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.