These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31946865)

  • 1. Fundus Image Enhancement Method Based on CycleGAN.
    You Q; Wan C; Sun J; Shen J; Ye H; Yu Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4500-4503. PubMed ID: 31946865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CycleGAN-based deep learning technique for artifact reduction in fundus photography.
    Yoo TK; Choi JY; Kim HK
    Graefes Arch Clin Exp Ophthalmol; 2020 Aug; 258(8):1631-1637. PubMed ID: 32361805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-aided diagnosis based on enhancement of degraded fundus photographs.
    Jin K; Zhou M; Wang S; Lou L; Xu Y; Ye J; Qian D
    Acta Ophthalmol; 2018 May; 96(3):e320-e326. PubMed ID: 29090844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Quality Assessment of Colour Fundus Images for Diabetic Retinopathy Screening in Telemedicine.
    Saha SK; Fernando B; Cuadros J; Xiao D; Kanagasingam Y
    J Digit Imaging; 2018 Dec; 31(6):869-878. PubMed ID: 29704086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image.
    Xu K; Feng D; Mi H
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29168750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal Image Enhancement Using Robust Inverse Diffusion Equation and Self-Similarity Filtering.
    Wang L; Liu G; Fu S; Xu L; Zhao K; Zhang C
    PLoS One; 2016; 11(7):e0158480. PubMed ID: 27388503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal image analysis for disease screening through local tetra patterns.
    Porwal P; Pachade S; Kokare M; Giancardo L; Mériaudeau F
    Comput Biol Med; 2018 Nov; 102():200-210. PubMed ID: 30308336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal Disease Screening Through Local Binary Patterns.
    Morales S; Engan K; Naranjo V; Colomer A
    IEEE J Biomed Health Inform; 2017 Jan; 21(1):184-192. PubMed ID: 26469792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DrishtiCare: a telescreening platform for diabetic retinopathy powered with fundus image analysis.
    Joshi GD; Sivaswamy J
    J Diabetes Sci Technol; 2011 Jan; 5(1):23-31. PubMed ID: 21303621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME).
    Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z
    Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triple Multi-scale Adversarial Learning with Self-attention and Quality Loss for Unpaired Fundus Fluorescein Angiography Synthesis.
    Cai Z; Xin J; Wu J; Liu S; Zuo W; Zheng N
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1592-1595. PubMed ID: 33018298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement and restoration of non-uniform illuminated Fundus Image of Retina obtained through thin layer of cataract.
    Mitra A; Roy S; Roy S; Setua SK
    Comput Methods Programs Biomed; 2018 Mar; 156():169-178. PubMed ID: 29428069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridging Synthetic and Real Images: A Transferable and Multiple Consistency Aided Fundus Image Enhancement Framework.
    Guo E; Fu H; Zhou L; Xu D
    IEEE Trans Med Imaging; 2023 Aug; 42(8):2189-2199. PubMed ID: 37027666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal fundus image enhancement with image decomposition and visual adaptation.
    Wang J; Li YJ; Yang KF
    Comput Biol Med; 2021 Jan; 128():104116. PubMed ID: 33249342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Microaneurysms in Fundus Images Based on an Attention Mechanism.
    Zhang L; Feng S; Duan G; Li Y; Liu G
    Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31627420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification.
    Hua CH; Huynh-The T; Kim K; Yu SY; Le-Tien T; Park GH; Bang J; Khan WA; Bae SH; Lee S
    Int J Med Inform; 2019 Dec; 132():103926. PubMed ID: 31605882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal image enhancement based on color dominance of image.
    C P; R JK
    Sci Rep; 2023 May; 13(1):7172. PubMed ID: 37138000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of early diabetic retinopathy by computer processing of fundus images--a preliminary study.
    Gilchrist J
    Ophthalmic Physiol Opt; 1987; 7(4):393-9. PubMed ID: 3454914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nested U-Net for Segmentation of Red Lesions in Retinal Fundus Images and Sub-image Classification for Removal of False Positives.
    Kundu S; Karale V; Ghorai G; Sarkar G; Ghosh S; Dhara AK
    J Digit Imaging; 2022 Oct; 35(5):1111-1119. PubMed ID: 35474556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Diagnosis of Diabetic Retinopathy from Fundus Images Using Neuro-Evolutionary Algorithms.
    Aquino-Brítez D; Gómez JA; Noguera JLV; García-Torres M; Román JCM; Gardel-Sotomayor PE; Benitez VEC; Matto IC; Pinto-Roa DP; Facon J; Grillo SA
    Stud Health Technol Inform; 2022 Jun; 290():689-693. PubMed ID: 35673105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.