These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 31946865)
21. A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis. Gegundez-Arias ME; Marin D; Ponte B; Alvarez F; Garrido J; Ortega C; Vasallo MJ; Bravo JM Comput Biol Med; 2017 Sep; 88():100-109. PubMed ID: 28711766 [TBL] [Abstract][Full Text] [Related]
22. Understanding How Fundus Image Quality Degradation Affects CNN-based Diagnosis. Liu H; Li H; Wang X; Li H; Ou M; Hao L; Hu Y; Liu J Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():438-442. PubMed ID: 36086182 [TBL] [Abstract][Full Text] [Related]
23. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images. Köse C; Sevik U; Ikibaş C; Erdöl H Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250 [TBL] [Abstract][Full Text] [Related]
24. Assessment of diabetic retinopathy using two ultra-wide-field fundus imaging systems, the Clarus® and Optos™ systems. Hirano T; Imai A; Kasamatsu H; Kakihara S; Toriyama Y; Murata T BMC Ophthalmol; 2018 Dec; 18(1):332. PubMed ID: 30572870 [TBL] [Abstract][Full Text] [Related]
25. A novel diagnostic information based framework for super-resolution of retinal fundus images. Das V; Dandapat S; Bora PK Comput Med Imaging Graph; 2019 Mar; 72():22-33. PubMed ID: 30772075 [TBL] [Abstract][Full Text] [Related]
26. Distinguising Proof of Diabetic Retinopathy Detection by Hybrid Approaches in Two Dimensional Retinal Fundus Images. S K; D M J Med Syst; 2019 May; 43(6):173. PubMed ID: 31069550 [TBL] [Abstract][Full Text] [Related]
28. Leveraging Regular Fundus Images for Training UWF Fundus Diagnosis Models via Adversarial Learning and Pseudo-Labeling. Ju L; Wang X; Zhao X; Bonnington P; Drummond T; Ge Z IEEE Trans Med Imaging; 2021 Oct; 40(10):2911-2925. PubMed ID: 33531297 [TBL] [Abstract][Full Text] [Related]
29. Image quality classification for DR screening using deep learning. FengLi Yu ; Jing Sun ; Annan Li ; Jun Cheng ; Cheng Wan ; Jiang Liu Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():664-667. PubMed ID: 29059960 [TBL] [Abstract][Full Text] [Related]
30. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey. Asiri N; Hussain M; Al Adel F; Alzaidi N Artif Intell Med; 2019 Aug; 99():101701. PubMed ID: 31606116 [TBL] [Abstract][Full Text] [Related]
31. An Automated System for the Detection and Classification of Retinal Changes Due to Red Lesions in Longitudinal Fundus Images. Adal KM; van Etten PG; Martinez JP; Rouwen KW; Vermeer KA; van Vliet LJ IEEE Trans Biomed Eng; 2018 Jun; 65(6):1382-1390. PubMed ID: 28922110 [TBL] [Abstract][Full Text] [Related]
32. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques. Akyol K; Şen B; Bayır Ş Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272 [TBL] [Abstract][Full Text] [Related]
33. Deep learning can generate traditional retinal fundus photographs using ultra-widefield images via generative adversarial networks. Yoo TK; Ryu IH; Kim JK; Lee IS; Kim JS; Kim HK; Choi JY Comput Methods Programs Biomed; 2020 Dec; 197():105761. PubMed ID: 32961385 [TBL] [Abstract][Full Text] [Related]
34. Assessment of image quality on color fundus retinal images using the automatic retinal image analysis. Shi C; Lee J; Wang G; Dou X; Yuan F; Zee B Sci Rep; 2022 Jun; 12(1):10455. PubMed ID: 35729197 [TBL] [Abstract][Full Text] [Related]
35. Classification of Diabetic Retinopathy Severity in Fundus Images Using the Vision Transformer and Residual Attention. Gu Z; Li Y; Wang Z; Kan J; Shu J; Wang Q Comput Intell Neurosci; 2023; 2023():1305583. PubMed ID: 36636467 [TBL] [Abstract][Full Text] [Related]
37. Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy. Selçuk T; Alkan A Med Hypotheses; 2019 Aug; 129():109242. PubMed ID: 31371092 [TBL] [Abstract][Full Text] [Related]
38. Construction of benchmark retinal image database for diabetic retinopathy analysis. Kaur J; Mittal D Proc Inst Mech Eng H; 2020 Sep; 234(9):1036-1048. PubMed ID: 32605477 [TBL] [Abstract][Full Text] [Related]
39. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976 [TBL] [Abstract][Full Text] [Related]
40. Deep image mining for diabetic retinopathy screening. Quellec G; Charrière K; Boudi Y; Cochener B; Lamard M Med Image Anal; 2017 Jul; 39():178-193. PubMed ID: 28511066 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]