These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 31946883)

  • 1. EEG Movement Artifact Suppression in Interactive Virtual Reality.
    Tremmel C; Herff C; Krusienski DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4576-4579. PubMed ID: 31946883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating Cognitive Workload in an Interactive Virtual Reality Environment Using EEG.
    Tremmel C; Herff C; Sato T; Rechowicz K; Yamani Y; Krusienski DJ
    Front Hum Neurosci; 2019; 13():401. PubMed ID: 31803035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Method to Understand Neural Oscillations During Full-Body Reaching: A Combined EEG and 3D Virtual Reality Study.
    Wang WE; Ho RLM; Gatto B; Der Veen SMV; Underation MK; Thomas JS; Antony AB; Coombes SA
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3074-3082. PubMed ID: 33232238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Situated VR: Toward a Congruent Hybrid Reality Without Experiential Artifacts.
    Sra M; Danry V; Maes P; Johnsen K; Billinghurst M
    IEEE Comput Graph Appl; 2022; 42(3):7-18. PubMed ID: 35671280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of hand movement velocity on cognitive conflict processing in a 3D object selection task in virtual reality.
    Singh AK; Gramann K; Chen HT; Lin CT
    Neuroimage; 2021 Feb; 226():117578. PubMed ID: 33221452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-computer interfaces and virtual reality for neurorehabilitation.
    Leeb R; PĂ©rez-Marcos D
    Handb Clin Neurol; 2020; 168():183-197. PubMed ID: 32164852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying the Effects of Congruence of Auditory and Visual Stimuli on Virtual Reality Experiences.
    Kim H; Lee IK
    IEEE Trans Vis Comput Graph; 2022 May; 28(5):2080-2090. PubMed ID: 35167477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immersive Virtual Reality and Ocular Tracking for Brain Mapping During Awake Surgery: Prospective Evaluation Study.
    Casanova M; Clavreul A; Soulard G; Delion M; Aubin G; Ter Minassian A; Seguier R; Menei P
    J Med Internet Res; 2021 Mar; 23(3):e24373. PubMed ID: 33759794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observing Actions Through Immersive Virtual Reality Enhances Motor Imagery Training.
    Choi JW; Kim BH; Huh S; Jo S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1614-1622. PubMed ID: 32634098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-trial regression of spatial exploration behavior indicates posterior EEG alpha modulation to reflect egocentric coding.
    Gehrke L; Gramann K
    Eur J Neurosci; 2021 Dec; 54(12):8318-8335. PubMed ID: 33609299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid wavelet and EMD/ICA approach for artifact suppression in pervasive EEG.
    Bono V; Das S; Jamal W; Maharatna K
    J Neurosci Methods; 2016 Jul; 267():89-107. PubMed ID: 27102040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of virtual reality technology locomotive multi-sensory motion stimuli on a user simulator sickness and controller intuitiveness during a navigation task.
    Aldaba CN; Moussavi Z
    Med Biol Eng Comput; 2020 Jan; 58(1):143-154. PubMed ID: 31758315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Immersive Virtual Reality Platform Integrating Human ECOG & sEEG: Implementation & Noise Analysis.
    Paschall CJ; Rao RPN; Hauptmann J; Ojemann JG; Herron J
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3105-3110. PubMed ID: 36086622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring Brain Activity in VR: EEG and Neuroimaging.
    Ocklenburg S; Peterburs J
    Curr Top Behav Neurosci; 2023; 65():47-71. PubMed ID: 37306852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Immersive Virtual Reality Headset Viewing on Young Children: Visuomotor Function, Postural Stability, and Motion Sickness.
    Tychsen L; Foeller P
    Am J Ophthalmol; 2020 Jan; 209():151-159. PubMed ID: 31377280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Test-retest reliability of the virtual reality sickness evaluation using electroencephalography (EEG).
    Lim HK; Ji K; Woo YS; Han DU; Lee DH; Nam SG; Jang KM
    Neurosci Lett; 2021 Jan; 743():135589. PubMed ID: 33359731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolating gait-related movement artifacts in electroencephalography during human walking.
    Kline JE; Huang HJ; Snyder KL; Ferris DP
    J Neural Eng; 2015 Aug; 12(4):046022. PubMed ID: 26083595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergy Through Integration of Wearable EEG and Virtual Reality for Mild Cognitive Impairment and Mild Dementia Screening.
    Lee B; Lee T; Jeon H; Lee S; Kim K; Cho W; Hwang J; Chae YW; Jung JM; Kang HJ; Kim NH; Shin C; Jang J
    IEEE J Biomed Health Inform; 2022 Jul; 26(7):2909-2919. PubMed ID: 35104235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability of the Dynavision task in virtual reality to explore visuomotor phenotypes.
    Pratviel Y; Deschodt-Arsac V; Larrue F; Arsac LM
    Sci Rep; 2021 Jan; 11(1):587. PubMed ID: 33436738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of the Oculus Rift S in controlled movement.
    Jost TA; Nelson B; Rylander J
    Disabil Rehabil Assist Technol; 2021 Aug; 16(6):632-636. PubMed ID: 31726896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.