These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31946888)

  • 1. Application of the Teagar-Kaiser energy operator and wavelet transform for detection of finger tapping contact and release times using accelerometery.
    O'Callaghan BPF; Flood MW; Lowery MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4596-4599. PubMed ID: 31946888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the Teager-Kaiser Energy Operator in an autonomous burst detector to create onset and offset profiles of forearm muscles during reach-to-grasp movements.
    Krabben T; Prange GB; Kobus HJ; Rietman JS; Buurke JH
    Acta Bioeng Biomech; 2016; 18(4):135-144. PubMed ID: 28133386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait Event Detection From Accelerometry Using the Teager-Kaiser Energy Operator.
    Flood MW; O'Callaghan BPF; Lowery MM
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):658-666. PubMed ID: 31150328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Teager-Kaiser energy operator signal conditioning improves EMG onset detection.
    Solnik S; Rider P; Steinweg K; DeVita P; Hortobágyi T
    Eur J Appl Physiol; 2010 Oct; 110(3):489-98. PubMed ID: 20526612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement system of finger-tapping contact force for quantitative diagnosis of Parkinson's disease.
    Okuno R; Yokoe M; Fukawa K; Sakoda S; Akazawa K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1354-7. PubMed ID: 18002215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing instantaneous energy in the EEG: a non-negative, frequency-weighted energy operator.
    O'Toole JM; Temko A; Stevenson N
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3288-91. PubMed ID: 25570693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying Parkinson's disease finger-tapping severity by extracting and synthesizing finger motion properties.
    Sano Y; Kandori A; Shima K; Yamaguchi Y; Tsuji T; Noda M; Higashikawa F; Yokoe M; Sakoda S
    Med Biol Eng Comput; 2016 Jun; 54(6):953-65. PubMed ID: 27032933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Onset detection in surface electromyographic signals across isometric explosive and ramped contractions: a comparison of computer-based methods.
    Crotty ED; Furlong LM; Hayes K; Harrison AJ
    Physiol Meas; 2021 Apr; 42(3):. PubMed ID: 33725688
    [No Abstract]   [Full Text] [Related]  

  • 9. Comparison of different algorithms based on TKEO for EMG change point detection.
    Wang S; Zhu S; Shang Z
    Physiol Meas; 2022 Jul; 43(7):. PubMed ID: 35697015
    [No Abstract]   [Full Text] [Related]  

  • 10. Teager-Kaiser Operator improves the accuracy of EMG onset detection independent of signal-to-noise ratio.
    Solnik S; DeVita P; Rider P; Long B; Hortobágyi T
    Acta Bioeng Biomech; 2008; 10(2):65-8. PubMed ID: 19032000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An automatic sleep spindle detector based on wavelets and the teager energy operator.
    Ahmed B; Redissi A; Tafreshi R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2596-9. PubMed ID: 19965220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic detection of surface EMG activation timing using a wavelet transform based method.
    Vannozzi G; Conforto S; D'Alessio T
    J Electromyogr Kinesiol; 2010 Aug; 20(4):767-72. PubMed ID: 20303286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in the abilities of individual fingers during the performance of fast, repetitive tapping movements.
    Aoki T; Francis PR; Kinoshita H
    Exp Brain Res; 2003 Sep; 152(2):270-80. PubMed ID: 12898096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech enhancement using empirical mode decomposition and the Teager-Kaiser energy operator.
    Khaldi K; Boudraa AO; Komaty A
    J Acoust Soc Am; 2014 Jan; 135(1):451-9. PubMed ID: 24437785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of finger-tapping movement.
    Jobbágy A; Harcos P; Karoly R; Fazekas G
    J Neurosci Methods; 2005 Jan; 141(1):29-39. PubMed ID: 15585286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of human finger tapping forces based on a fingerpad-stiffness model.
    Shima K; Tamura Y; Tsuji T; Kandori A; Yokoe M; Sakoda S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2663-7. PubMed ID: 19963779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computer vision framework for finger-tapping evaluation in Parkinson's disease.
    Khan T; Nyholm D; Westin J; Dougherty M
    Artif Intell Med; 2014 Jan; 60(1):27-40. PubMed ID: 24332155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Teager-Kaiser energy operation of surface EMG improves muscle activity onset detection.
    Li X; Zhou P; Aruin AS
    Ann Biomed Eng; 2007 Sep; 35(9):1532-8. PubMed ID: 17473984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method for the quantification of key components of manual dexterity after stroke.
    Térémetz M; Colle F; Hamdoun S; Maier MA; Lindberg PG
    J Neuroeng Rehabil; 2015 Aug; 12():64. PubMed ID: 26233571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal and Force Characteristics of Rapid Single-Finger Tapping in Healthy Older Adults.
    Aoki T; Tsuda H; Kinoshita H
    Motor Control; 2019 Oct; 23(4):518-534. PubMed ID: 30971170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.