These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31946889)

  • 1. Quantitative Assessment of Ataxic Gait using Inertial Sensing at Different Walking Speeds.
    Phan D; Nguyen N; Pathirana PN; Horne M; Power L; Szmulewicz D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4600-4603. PubMed ID: 31946889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia.
    Schniepp R; Schlick C; Pradhan C; Dieterich M; Brandt T; Jahn K; Wuehr M
    J Neurol; 2016 Jul; 263(7):1409-17. PubMed ID: 27159995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower trunk motion and speed-dependence during walking.
    Kavanagh JJ
    J Neuroeng Rehabil; 2009 Apr; 6():9. PubMed ID: 19356256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait regularity assessed by wearable sensors: Comparison between accelerometer and gyroscope data for different sensor locations and walking speeds in healthy subjects.
    Scalera GM; Ferrarin M; Rabuffetti M
    J Biomech; 2020 Dec; 113():110115. PubMed ID: 33221581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive scheme for the objective upper body assessments of subjects with cerebellar ataxia.
    Tran H; Nguyen KD; Pathirana PN; Horne MK; Power L; Szmulewicz DJ
    J Neuroeng Rehabil; 2020 Dec; 17(1):162. PubMed ID: 33276783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principal component analysis for ataxic gait using a triaxial accelerometer.
    Matsushima A; Yoshida K; Genno H; Ikeda SI
    J Neuroeng Rehabil; 2017 May; 14(1):37. PubMed ID: 28464831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-life gait assessment in degenerative cerebellar ataxia: Toward ecologically valid biomarkers.
    Ilg W; Seemann J; Giese M; Traschütz A; Schöls L; Timmann D; Synofzik M
    Neurology; 2020 Sep; 95(9):e1199-e1210. PubMed ID: 32611635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanics of very slow human walking.
    Wu AR; Simpson CS; van Asseldonk EHF; van der Kooij H; Ijspeert AJ
    Sci Rep; 2019 Dec; 9(1):18079. PubMed ID: 31792226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Risk of Falls and Dynamic Unbalance in Cerebellar Ataxia by Inertial Sensor Assessment.
    Caliandro P; Conte C; Iacovelli C; Tatarelli A; Castiglia SF; Reale G; Serrao M
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31861099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of toe-out and toe-in gait with varying walking speeds on knee joint mechanics and lower limb energetics.
    Khan SS; Khan SJ; Usman J
    Gait Posture; 2017 Mar; 53():185-192. PubMed ID: 28189095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative assessment of cerebellar ataxia, through automated limb functional tests.
    Krishna R; Pathirana PN; Horne M; Power L; Szmulewicz DJ
    J Neuroeng Rehabil; 2019 Feb; 16(1):31. PubMed ID: 30813963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower limb angular velocity during walking at various speeds.
    Mentiplay BF; Banky M; Clark RA; Kahn MB; Williams G
    Gait Posture; 2018 Sep; 65():190-196. PubMed ID: 30558929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impairment of Global Lower Limb Muscle Coactivation During Walking in Cerebellar Ataxias.
    Fiori L; Ranavolo A; Varrecchia T; Tatarelli A; Conte C; Draicchio F; Castiglia SF; Coppola G; Casali C; Pierelli F; Serrao M
    Cerebellum; 2020 Aug; 19(4):583-596. PubMed ID: 32410093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of gait and balance impairment in people with spinocerebellar ataxia using wearable sensors.
    Zhou H; Nguyen H; Enriquez A; Morsy L; Curtis M; Piser T; Kenney C; Stephen CD; Gupta AS; Schmahmann JD; Vaziri A
    Neurol Sci; 2022 Apr; 43(4):2589-2599. PubMed ID: 34664180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait Variability in Spinocerebellar Ataxia Assessed Using Wearable Inertial Sensors.
    Shah VV; Rodriguez-Labrada R; Horak FB; McNames J; Casey H; Hansson Floyd K; El-Gohary M; Schmahmann JD; Rosenthal LS; Perlman S; Velázquez-Pérez L; Gomez CM
    Mov Disord; 2021 Dec; 36(12):2922-2931. PubMed ID: 34424581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Old adult fallers display reduced flexibility of arm and trunk movements when challenged with different walking speeds.
    Shishov N; Gimmon Y; Rashed H; Kurz I; Riemer R; Shapiro A; Debi R; Melzer I
    Gait Posture; 2017 Feb; 52():280-286. PubMed ID: 28013150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network.
    Jin H; Kang I; Choi G; Molinaro DD; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4897-4900. PubMed ID: 34892306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Test-Retest Reliability of Kinematic and Temporal Outcome Measures for Clinical Gait and Stair Walking Tests, Based on Wearable Inertial Sensors.
    Nilsson S; Ertzgaard P; Lundgren M; Grip H
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults.
    Agostini V; Gastaldi L; Rosso V; Knaflitz M; Tadano S
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29065485
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.