These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31946889)

  • 21. Effect of Backpack Strap Patterns on Gait Parameters in Young Adults at Self-Selected Normal and Fast Walking Speeds.
    Abaraogu UO; Ugwa WO; Nnodim O; Ezenwankwo EF
    PM R; 2017 Jul; 9(7):676-682. PubMed ID: 27780769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local Dynamic Stability of Trunk During Gait is Responsive to Rehabilitation in Subjects with Primary Degenerative Cerebellar Ataxia.
    Castiglia SF; Trabassi D; Conte C; Gioiosa V; Sebastianelli G; Abagnale C; Ranavolo A; Di Lorenzo C; Coppola G; Casali C; Serrao M
    Cerebellum; 2024 Aug; 23(4):1478-1489. PubMed ID: 38279000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Upper body kinematics in patients with cerebellar ataxia.
    Conte C; Pierelli F; Casali C; Ranavolo A; Draicchio F; Martino G; Harfoush M; Padua L; Coppola G; Sandrini G; Serrao M
    Cerebellum; 2014 Dec; 13(6):689-97. PubMed ID: 25063003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatiotemporal and kinematic characteristics of gait initiation across a wide speed range.
    Stansfield B; Hawkins K; Adams S; Church D
    Gait Posture; 2018 Mar; 61():331-338. PubMed ID: 29427858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.
    Fantozzi S; Giovanardi A; Borra D; Gatta G
    PLoS One; 2015; 10(9):e0138105. PubMed ID: 26368131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Upper body and ankle strategies compensate for reduced lateral stability at very slow walking speeds.
    Best AN; Wu AR
    Proc Biol Sci; 2020 Oct; 287(1936):20201685. PubMed ID: 33049173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative analysis of the bilateral coordination and gait asymmetry using inertial measurement unit-based gait analysis.
    Han SH; Kim CO; Kim KJ; Jeon J; Chang H; Kim ES; Park H
    PLoS One; 2019; 14(10):e0222913. PubMed ID: 31574130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing Wearable Gait Monitoring Systems: Identifying Optimal Kinematic Inputs in Typical Adolescents.
    Kahlon AS; Verma K; Sage A; Lee SCK; Behboodi A
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparing different methods of gait speed estimation using wearable sensors in individuals with varying levels of mobility impairments.
    Nunez EH; Parhar S; Iwata I; Setoguchi S; Chen H; Daneault JF
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3792-3798. PubMed ID: 33018827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors.
    Martinez-Hernandez U; Dehghani-Sanij AA
    Neural Netw; 2018 Jun; 102():107-119. PubMed ID: 29567532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring Effects of Two-Handed Side and Anterior Load Carriage on Thoracic-Pelvic Coordination Using Wearable Gyroscopes.
    Lim S; D'Souza C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of walking speed on upper body kinematics during gait in healthy subjects.
    Romkes J; Bracht-Schweizer K
    Gait Posture; 2017 May; 54():304-310. PubMed ID: 28395170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complementing Clinical Gait Assessments of Spinal Cord Injured Individuals using Wearable Movement Sensors.
    Werner C; Schneider S; Gassert R; Curt A; Demko L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3142-3145. PubMed ID: 33018671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill.
    Donath L; Faude O; Lichtenstein E; Nüesch C; Mündermann A
    J Neuroeng Rehabil; 2016 Jan; 13():6. PubMed ID: 26790409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative Assessment of Cerebella Ataxia, through Automated Limb-Coordination tests.
    Krishna R; Pathirana PN; Horne M; Power L; Szmulewicz DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6850-6853. PubMed ID: 31947414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measuring Gait Velocity and Stride Length with an Ultrawide Bandwidth Local Positioning System and an Inertial Measurement Unit.
    Singh P; Esposito M; Barrons Z; Clermont CA; Wannop J; Stefanyshyn D
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33919056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal-spatial gait parameter models of very slow walking.
    Smith AJJ; Lemaire ED
    Gait Posture; 2018 Mar; 61():125-129. PubMed ID: 29331720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Automated Classification of Pathological Gait Using Unobtrusive Sensing Technology.
    Dolatabadi E; Taati B; Mihailidis A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2336-2346. PubMed ID: 28792901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wearable sensor and machine learning estimate tendon load and walking speed during immobilizing boot ambulation.
    Kwon MP; Hullfish TJ; Humbyrd CJ; Boakye LAT; Baxter JR
    Sci Rep; 2023 Oct; 13(1):18086. PubMed ID: 37872320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inclined Weight-Loaded Walking at Different Speeds: Pelvis-Shoulder Coordination, Trunk Movements and Cost of Transport.
    Rosa RGD; Gomeñuka NA; Oliveira HB; Peyré-Tartaruga LA
    J Mot Behav; 2018; 50(1):73-79. PubMed ID: 28350234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.