BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 31946895)

  • 1. Cuff-less Blood Pressure Measurement Using Supplementary ECG and PPG Features Extracted Through Wavelet Transformation.
    Singla M; Sistla P; Azeemuddin S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4628-4631. PubMed ID: 31946895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Fiducial Point Detection Using Haar Wavelet for Beat-by-Beat Blood Pressure Estimation.
    Singla M; Azeemuddin S; Sistla P
    IEEE J Transl Eng Health Med; 2020; 8():1900711. PubMed ID: 32596063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoplethysmography derivatives and pulse transit time in overnight blood pressure monitoring.
    Shahrbabaki SS; Ahmed B; Penzel T; Cvetkovic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2855-2858. PubMed ID: 28268912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cuff-less blood pressure measurement based on hybrid feature selection algorithm and multi-penalty regularized regression technique.
    Khan Mamun MMR
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34633299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel blood pressure estimation method using single photoplethysmography feature.
    Yang Chen ; Shuo Cheng ; Tong Wang ; Ting Ma
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1712-1715. PubMed ID: 29060216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting Algorithms based Cuff-less Blood Pressure Estimation from Clinically Relevant ECG and PPG Morphological Features.
    Ghosh A; Sarkar S; Liu H; Mandal S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38082568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of cuffless blood pressure estimation method based on multiple physiological parameters.
    Zhang Y; Zhou C; Huang Z; Ye X
    Physiol Meas; 2021 Jun; 42(5):. PubMed ID: 33857923
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG.
    Liu J; Li Y; Ding XR; Dai WX; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5973-6. PubMed ID: 26737652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation.
    Wan-Hua Lin ; Hui Wang ; Samuel OW; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():738-741. PubMed ID: 29059978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Real-Time Cuffless Blood Pressure Measurement Systems with ECG Electrodes and a Microphone Using Pulse Transit Time (PTT).
    Choi J; Kang Y; Park J; Joung Y; Koo C
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning-Based Model for Central Blood Pressure Estimation using Feature Extracted from ECG and PPG signals.
    Singla M; Azeemuddin S; Sistla P
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():855-858. PubMed ID: 33018119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms.
    Zuhair Sameen A; Jaafar R; Zahedi E; Kok Beng G
    J Med Eng Technol; 2022 Oct; 46(7):567-589. PubMed ID: 35801952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
    Li Z; He W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous Tracking of Changes in Systolic Blood Pressure using BCG and ECG.
    He S; Dajani HR; Meade RD; Kenny GP; Bolic M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6826-6829. PubMed ID: 31947408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood Pressure Estimation Based on PPG and ECG Signals Using Knowledge Distillation.
    Tang H; Ma G; Qiu L; Zheng L; Bao R; Liu J; Wang L
    Cardiovasc Eng Technol; 2024 Feb; 15(1):39-51. PubMed ID: 38191807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KD-Informer: A Cuff-Less Continuous Blood Pressure Waveform Estimation Approach Based on Single Photoplethysmography.
    Ma C; Zhang P; Song F; Sun Y; Fan G; Zhang T; Feng Y; Zhang G
    IEEE J Biomed Health Inform; 2023 May; 27(5):2219-2230. PubMed ID: 35700247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.