These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31946909)

  • 41. Crackle and wheeze detection in lung sound signals using convolutional neural networks.
    Faustino P; Oliveira J; Coimbra M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():345-348. PubMed ID: 34891306
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Polarity of crackle waveforms: a new index for crackle differentiation].
    Matsuzaki M
    Hokkaido Igaku Zasshi; 1985 Jan; 60(1):104-13. PubMed ID: 3988228
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Digital stethoscopes compared to standard auscultation for detecting abnormal paediatric breath sounds.
    Kevat AC; Kalirajah A; Roseby R
    Eur J Pediatr; 2017 Jul; 176(7):989-992. PubMed ID: 28508991
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lung crackle characteristics in patients with asbestosis, asbestos-related pleural disease and left ventricular failure using a time-expanded waveform analysis--a comparative study.
    al Jarad N; Davies SW; Logan-Sinclair R; Rudd RM
    Respir Med; 1994 Jan; 88(1):37-46. PubMed ID: 8029512
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Respiratory sound analysis in the era of evidence-based medicine and the world of medicine 2.0.
    Andrès E; Gass R; Charloux A; Brandt C; Hentzler A
    J Med Life; 2018; 11(2):89-106. PubMed ID: 30140315
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spectral and waveform characteristics of fine and coarse crackles.
    Munakata M; Ukita H; Doi I; Ohtsuka Y; Masaki Y; Homma Y; Kawakami Y
    Thorax; 1991 Sep; 46(9):651-7. PubMed ID: 1948794
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Probing the existence of medium pulmonary crackles via model-based clustering.
    Yeginer M; Kahya YP
    Comput Biol Med; 2010 Sep; 40(9):765-74. PubMed ID: 20728880
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A simple computer-based measurement and analysis system of pulmonary auscultation sounds.
    Polat H; Güler I
    J Med Syst; 2004 Dec; 28(6):665-72. PubMed ID: 15615294
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computerized respiratory sounds: a comparison between patients with stable and exacerbated COPD.
    Jácome C; Oliveira A; Marques A
    Clin Respir J; 2017 Sep; 11(5):612-620. PubMed ID: 26403859
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detection of crackle events using a multi-feature approach.
    Mendes L; Vogiatzis IM; Perantoni E; Kaimakamis E; Chouvarda I; Maglaveras N; Henriques J; Carvalho P; Paiva RP
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3679-3683. PubMed ID: 28269092
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of semi-supervised deep learning to lung sound analysis.
    Chamberlain D; Kodgule R; Ganelin D; Miglani V; Fletcher RR
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():804-807. PubMed ID: 28324938
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discrimination analysis of discontinuous breath sounds using higher-order crossings.
    Hadjileontiadis LJ
    Med Biol Eng Comput; 2003 Jul; 41(4):445-55. PubMed ID: 12892368
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Application of the computer-based respiratory sound analysis system based on Mel-frequency cepstral coefficient and dynamic time warping in healthy children].
    Yan WY; Li L; Yang YG; Lin XL; Wu JZ
    Zhonghua Er Ke Za Zhi; 2016 Aug; 54(8):605-9. PubMed ID: 27510874
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of adventitious lung sounds originating from pulmonary tuberculosis.
    Becker KW; Scheffer C; Blanckenberg MM; Diacon AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4334-7. PubMed ID: 24110692
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neural classification of lung sounds using wavelet coefficients.
    Kandaswamy A; Kumar CS; Ramanathan RP; Jayaraman S; Malmurugan N
    Comput Biol Med; 2004 Sep; 34(6):523-37. PubMed ID: 15265722
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adventitious lung sounds imaging by ICA-TVAR scheme.
    Castañeda-Villa S; Castaneda-Villa N; Gonzalez-Camarena R; Mejia-Avila M; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1354-7. PubMed ID: 24109947
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computerized Respiratory Sounds Are a Reliable Marker in Subjects With COPD.
    Jácome C; Marques A
    Respir Care; 2015 Sep; 60(9):1264-75. PubMed ID: 25969514
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The acoustic characteristics of fine crackles predict honeycombing on high-resolution computed tomography.
    Fukumitsu T; Obase Y; Ishimatsu Y; Nakashima S; Ishimoto H; Sakamoto N; Nishitsuji K; Shiwa S; Sakai T; Miyahara S; Ashizawa K; Mukae H; Kozu R
    BMC Pulm Med; 2019 Aug; 19(1):153. PubMed ID: 31419981
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diagnosis of asbestosis by a time expanded wave form analysis, auscultation and high resolution computed tomography: a comparative study.
    al Jarad N; Strickland B; Bothamley G; Lock S; Logan-Sinclair R; Rudd RM
    Thorax; 1993 Apr; 48(4):347-53. PubMed ID: 8511731
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new method to detect crackles in respiratory sounds.
    Vannuccini L; Rossi M; Pasquali G
    Technol Health Care; 1998 Jun; 6(1):75-9. PubMed ID: 9754686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.