These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31947110)

  • 41. Continuous low-frequency EEG decoding of arm movement for closed-loop, natural control of a robotic arm.
    Mondini V; Kobler RJ; Sburlea AI; Müller-Putz GR
    J Neural Eng; 2020 Aug; 17(4):046031. PubMed ID: 32679573
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins N; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4108-11. PubMed ID: 23366831
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neural decoding of continuous upper limb movements: a meta-analysis.
    Khaliq Fard M; Fallah A; Maleki A
    Disabil Rehabil Assist Technol; 2022 Oct; 17(7):731-737. PubMed ID: 33186068
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unimanual Versus Bimanual Motor Imagery Classifiers for Assistive and Rehabilitative Brain Computer Interfaces.
    Vuckovic A; Pangaro S; Finda P
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2407-2415. PubMed ID: 30371375
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton.
    Kilicarslan A; Prasad S; Grossman RG; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5606-9. PubMed ID: 24111008
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Decoding movement direction from cortical microelectrode recordings using an LSTM-based neural network.
    Premchand B; Toe KK; Wang C; Shaikh S; Libedinsky C; Ang KK; So RQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3007-3010. PubMed ID: 33018638
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gumpy: a Python toolbox suitable for hybrid brain-computer interfaces.
    Tayeb Z; Waniek N; Fedjaev J; Ghaboosi N; Rychly L; Widderich C; Richter C; Braun J; Saveriano M; Cheng G; Conradt J
    J Neural Eng; 2018 Dec; 15(6):065003. PubMed ID: 30215610
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-linear online low-frequency EEG decoding of arm movements during a pursuit tracking task.
    Martinez-Cagigal V; Kobler RJ; Mondini V; Hornero R; Muller-Putz GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2981-2985. PubMed ID: 33018632
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network.
    Tortora S; Ghidoni S; Chisari C; Micera S; Artoni F
    J Neural Eng; 2020 Jul; 17(4):046011. PubMed ID: 32480381
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Teleoperation control of a wheeled mobile robot based on Brain-machine Interface.
    Zhao SN; Cui Y; He Y; He Z; Diao Z; Peng F; Cheng C
    Math Biosci Eng; 2023 Jan; 20(2):3638-3660. PubMed ID: 36899597
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved prediction of bimanual movements by a two-staged (effector-then-trajectory) decoder with epidural ECoG in nonhuman primates.
    Choi H; Lee J; Park J; Lee S; Ahn KH; Kim IY; Lee KM; Jang DP
    J Neural Eng; 2018 Feb; 15(1):016011. PubMed ID: 28875947
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A brain-controlled lower-limb exoskeleton for human gait training.
    Liu D; Chen W; Pei Z; Wang J
    Rev Sci Instrum; 2017 Oct; 88(10):104302. PubMed ID: 29092520
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates.
    López-Larraz E; Montesano L; Gil-Agudo Á; Minguez J
    J Neuroeng Rehabil; 2014 Nov; 11():153. PubMed ID: 25398273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces.
    Kim HK; Biggs SJ; Schloerb DW; Carmena JM; Lebedev MA; Nicolelis MA; Srinivasan MA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1164-73. PubMed ID: 16761843
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hierarchical Decoding Model of Upper Limb Movement Intention From EEG Signals Based on Attention State Estimation.
    Bi L; Xia S; Fei W
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2008-2016. PubMed ID: 34559657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Continuous 2D trajectory decoding from attempted movement: across-session performance in able-bodied and feasibility in a spinal cord injured participant.
    Pulferer HS; Ásgeirsdóttir B; Mondini V; Sburlea AI; Müller-Putz GR
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35443233
    [No Abstract]   [Full Text] [Related]  

  • 59. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. EEG source space analysis of the supervised factor analytic approach for the classification of multi-directional arm movement.
    Shenoy Handiru V; Vinod AP; Guan C
    J Neural Eng; 2017 Aug; 14(4):046008. PubMed ID: 28516901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.