These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31947155)

  • 1. RASNet: Segmentation for Tracking Surgical Instruments in Surgical Videos Using Refined Attention Segmentation Network.
    Ni ZL; Bian GB; Xie XL; Hou ZG; Zhou XH; Zhou YJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5735-5738. PubMed ID: 31947155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A parallel network utilizing local features and global representations for segmentation of surgical instruments.
    Sun X; Zou Y; Wang S; Su H; Guan B
    Int J Comput Assist Radiol Surg; 2022 Oct; 17(10):1903-1913. PubMed ID: 35680692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate instance segmentation of surgical instruments in robotic surgery: model refinement and cross-dataset evaluation.
    Kong X; Jin Y; Dou Q; Wang Z; Wang Z; Lu B; Dong E; Liu YH; Sun D
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1607-1614. PubMed ID: 34173182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. U-NetPlus: A Modified Encoder-Decoder U-Net Architecture for Semantic and Instance Segmentation of Surgical Instruments from Laparoscopic Images.
    Kamrul Hasan SM; Linte CA
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():7205-7211. PubMed ID: 31947497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CGBA-Net: context-guided bidirectional attention network for surgical instrument segmentation.
    Wang Y; Hu Y; Shen J; Zhang X; Li H; Qiu Z; Ye F; Liu J
    Int J Comput Assist Radiol Surg; 2023 Oct; 18(10):1769-1781. PubMed ID: 37199827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An attention-guided network for surgical instrument segmentation from endoscopic images.
    Yang L; Gu Y; Bian G; Liu Y
    Comput Biol Med; 2022 Dec; 151(Pt A):106216. PubMed ID: 36356389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inpainting surgical occlusion from laparoscopic video sequences for robot-assisted interventions.
    Hasan SMK; Simon RA; Linte CA
    J Med Imaging (Bellingham); 2023 Jul; 10(4):045002. PubMed ID: 37649957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unpaired deep adversarial learning for multi-class segmentation of instruments in robot-assisted surgical videos.
    Nema S; Vachhani L
    Int J Med Robot; 2023 Aug; 19(4):e2514. PubMed ID: 36987579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surgical-DeSAM: decoupling SAM for instrument segmentation in robotic surgery.
    Sheng Y; Bano S; Clarkson MJ; Islam M
    Int J Comput Assist Radiol Surg; 2024 Jul; 19(7):1267-1271. PubMed ID: 38758289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SurgiNet: Pyramid Attention Aggregation and Class-wise Self-Distillation for Surgical Instrument Segmentation.
    Ni ZL; Zhou XH; Wang GA; Yue WQ; Li Z; Bian GB; Hou ZG
    Med Image Anal; 2022 Feb; 76():102310. PubMed ID: 34954623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ST-MTL: Spatio-Temporal multitask learning model to predict scanpath while tracking instruments in robotic surgery.
    Islam M; Vs V; Lim CM; Ren H
    Med Image Anal; 2021 Jan; 67():101837. PubMed ID: 33129153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyramid attention recurrent networks for real-time guidewire segmentation and tracking in intraoperative X-ray fluoroscopy.
    Zhou YJ; Xie XL; Zhou XH; Liu SQ; Bian GB; Hou ZG
    Comput Med Imaging Graph; 2020 Jul; 83():101734. PubMed ID: 32599518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Attentional Feature Fusion for Surgical Instrument Segmentation.
    Zhou X; Guo Y; He W; Song H
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3061-3065. PubMed ID: 34891889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated psoriasis lesion segmentation from unconstrained environment using residual U-Net with transfer learning.
    Raj R; Londhe ND; Sonawane R
    Comput Methods Programs Biomed; 2021 Jul; 206():106123. PubMed ID: 33975181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound Image Segmentation: A Deeply Supervised Network With Attention to Boundaries.
    Mishra D; Chaudhury S; Sarkar M; Soin AS
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1637-1648. PubMed ID: 30346279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FUN-SIS: A Fully UNsupervised approach for Surgical Instrument Segmentation.
    Sestini L; Rosa B; De Momi E; Ferrigno G; Padoy N
    Med Image Anal; 2023 Apr; 85():102751. PubMed ID: 36716700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods and datasets for segmentation of minimally invasive surgical instruments in endoscopic images and videos: A review of the state of the art.
    Rueckert T; Rueckert D; Palm C
    Comput Biol Med; 2024 Feb; 169():107929. PubMed ID: 38184862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time instance segmentation of surgical instruments using attention and multi-scale feature fusion.
    Cerón JCÁ; Ruiz GO; Chang L; Ali S
    Med Image Anal; 2022 Oct; 81():102569. PubMed ID: 35985195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InstrumentNet: An integrated model for real-time segmentation of intracranial surgical instruments.
    Liu Z; Zheng L; Gu L; Yang S; Zhong Z; Zhang G
    Comput Biol Med; 2023 Nov; 166():107565. PubMed ID: 37839219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MVD-Net: Semantic Segmentation of Cataract Surgery Using Multi-View Learning.
    Ou M; Li H; Liu H; Wang X; Yi C; Hao L; Hu Y; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():5035-5038. PubMed ID: 36086003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.