These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 31947188)

  • 1. Techniques for Improving the Reliability of Prosthesis Wearer Muscle Signals Using Pressure and EMG Sensors.
    Shin JW; Eom SH; Lee CU; Lee EH
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5882-5885. PubMed ID: 31947188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of EMG Sensors Based on Motion Coordinated Analysis.
    Chen L; Liu X; Xuan B; Zhang J; Liu Z; Zhang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the weight actions of the hand prosthesis on the performance of pattern recognition based myoelectric control: preliminary study.
    Cipriani C; Sassu R; Controzzi M; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1620-3. PubMed ID: 22254633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of finger activation for use in a robotic prosthesis arm.
    Peleg D; Braiman E; Yom-Tov E; Inbar GF
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):290-3. PubMed ID: 12611366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hand motion estimation by EMG signals using linear multiple regression models.
    Kitamura T; Tsujiuchi N; Koizumi T
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1339-42. PubMed ID: 17945636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory evaluation of a unified theory for simultaneous multiple axis artificial arm control.
    Jerard RB; Jacobsen SC
    J Biomech Eng; 1980 Aug; 102(3):199. PubMed ID: 19530801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element modeling of electromagnetic signal propagation in a phantom arm.
    Kuiken TA; Stoykov NS; Popović M; Lowery M; Taflove A
    IEEE Trans Neural Syst Rehabil Eng; 2001 Dec; 9(4):346-54. PubMed ID: 12018647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and classification of compressed EMG signals by wavelet transform via alternative neural networks algorithms.
    Ozsert M; Yavuz O; Durak-Ata L
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):521-5. PubMed ID: 20645198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a Low-Cost Electromyography (EMG) System via a Commercial and Accurate EMG Device: Pilot Study.
    Fuentes Del Toro S; Wei Y; Olmeda E; Ren L; Guowu W; Díaz V
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra-session and inter-day reliability of forearm surface EMG during varying hand grip forces.
    Hashemi Oskouei A; Paulin MG; Carman AB
    J Electromyogr Kinesiol; 2013 Feb; 23(1):216-22. PubMed ID: 22999075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EMG control of a bionic knee prosthesis: exploiting muscle co-contractions for improved locomotor function.
    Dawley JA; Fite KB; Fulk GD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650389. PubMed ID: 24187208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of contaminant type in surface electromyography (EMG) signals.
    McCool P; Fraser GD; Chan AD; Petropoulakis L; Soraghan JJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):774-83. PubMed ID: 24760926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on the advancements in the field of upper limb prosthesis.
    Das N; Nagpal N; Bankura SS
    J Med Eng Technol; 2018 Oct; 42(7):532-545. PubMed ID: 30875266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of electromyography for the assessment of sense of muscular effort: a test-retest reliability study.
    Weerakkody N; De Noronha M; Wiseman P; Sleeth P; Jayalath L
    Somatosens Mot Res; 2019 Mar; 36(1):1-7. PubMed ID: 30654672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Piezoresistive Sensor to Measure Muscle Contraction and Mechanomyography.
    Esposito D; Andreozzi E; Fratini A; Gargiulo GD; Savino S; Niola V; Bifulco P
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue compensation of the electromyographic signal for prosthetic control and force estimation.
    Park E; Meek SG
    IEEE Trans Biomed Eng; 1993 Oct; 40(10):1019-23. PubMed ID: 8294126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-MVC EMG normalization technique for the trunk musculature: Part 2. Validation and use to predict spinal loads.
    Marras WS; Davis KG; Maronitis AB
    J Electromyogr Kinesiol; 2001 Feb; 11(1):11-8. PubMed ID: 11166604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between surface-detected EMG signals and motor unit activation.
    Suzuki H; Conwit RA; Stashuk D; Santarsiero L; Metter EJ
    Med Sci Sports Exerc; 2002 Sep; 34(9):1509-17. PubMed ID: 12218747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of surface EMG measurements over 12 hours.
    Ochia RS; Cavanagh PR
    J Electromyogr Kinesiol; 2007 Jun; 17(3):365-71. PubMed ID: 16723259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.