These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31947243)

  • 1. Real-time Subject-specific Head and Facial Mimic Animation System using a Contactless Kinect Sensor and System of Systems Approach
    Nguyen TN; Dakpe S; Ho Ba Tho MC; Dao TT
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6132-6135. PubMed ID: 31947243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time computer vision system for tracking simultaneously subject-specific rigid head and non-rigid facial mimic movements using a contactless sensor and system of systems approach.
    Nguyen TN; Dakpé S; Ho Ba Tho MC; Dao TT
    Comput Methods Programs Biomed; 2020 Jul; 191():105410. PubMed ID: 32113103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinect-driven Patient-specific Head, Skull, and Muscle Network Modelling for Facial Palsy Patients.
    Nguyen TN; Dakpe S; Ho Ba Tho MC; Dao TT
    Comput Methods Programs Biomed; 2021 Mar; 200():105846. PubMed ID: 33279251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Baseline Facial Muscle Database Using Statistical Shape Modeling and In Silico Trials toward Decision Support for Facial Rehabilitation.
    Tran VD; Nguyen TN; Ballit A; Dao TT
    Bioengineering (Basel); 2023 Jun; 10(6):. PubMed ID: 37370668
    [No Abstract]   [Full Text] [Related]  

  • 5. A statistical shape modeling approach for predicting subject-specific human skull from head surface.
    Nguyen TN; Tran VD; Nguyen HQ; Dao TT
    Med Biol Eng Comput; 2020 Oct; 58(10):2355-2373. PubMed ID: 32710378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SVM classification of facial functions based on facial landmarks and animation Units.
    Gaber A; Taher MF; Abdel Wahed M; Shalaby NM
    Biomed Phys Eng Express; 2021 Jul; 7(5):. PubMed ID: 34198276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive assessment of facial paralysis based on facial animation units.
    Gaber A; Taher MF; Abdel Wahed M; Shalaby NM; Gaber S
    PLoS One; 2022; 17(12):e0277297. PubMed ID: 36516130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of a method for the analysis of facial mobility. I. Vector of displacement.
    Trotman CA; Faraway JJ; Silvester KT; Greenlee GM; Johnston LE
    Cleft Palate Craniofac J; 1998 Mar; 35(2):132-41. PubMed ID: 9527310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of facial recognition with Microsoft Kinect v2 sensor for patient verification.
    Silverstein E; Snyder M
    Med Phys; 2017 Jun; 44(6):2391-2399. PubMed ID: 28370061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evaluation of 3D head pose estimation using the Microsoft Kinect v2.
    Darby J; Sánchez MB; Butler PB; Loram ID
    Gait Posture; 2016 Jul; 48():83-88. PubMed ID: 27477714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of facial paralysis based on machine learning techniques.
    Gaber A; Taher MF; Wahed MA; Shalaby NM; Gaber S
    Biomed Eng Online; 2022 Sep; 21(1):65. PubMed ID: 36071434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Faster and improved 3-D head digitization in MEG using Kinect.
    Vema Krishna Murthy S; MacLellan M; Beyea S; Bardouille T
    Front Neurosci; 2014; 8():326. PubMed ID: 25389382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast 3D Face Reconstruction from a Single Image Using Different Deep Learning Approaches for Facial Palsy Patients.
    Nguyen DP; Nguyen TN; Dakpé S; Ho Ba Tho MC; Dao TT
    Bioengineering (Basel); 2022 Oct; 9(11):. PubMed ID: 36354529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SU-E-I-92: Accuracy Evaluation of Depth Data in Microsoft Kinect.
    Kozono K; Aoki M; Ono M; Kamikawa Y; Arimura H; Toyofuku F
    Med Phys; 2012 Jun; 39(6Part5):3646. PubMed ID: 28517624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expressive facial animation synthesis by learning speech coarticulation and expression spaces.
    Deng Z; Neumann U; Lewis JP; Kim TY; Bulut M; Narayanan S
    IEEE Trans Vis Comput Graph; 2006; 12(6):1523-34. PubMed ID: 17073374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance-driven facial animation: basic research on human judgments of emotional state in facial avatars.
    Rizzo AA; Neumann U; Enciso R; Fidaleo D; Noh JY
    Cyberpsychol Behav; 2001 Aug; 4(4):471-87. PubMed ID: 11708727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The clinical application of three-dimensional motion capture (4D): a novel approach to quantify the dynamics of facial animations.
    Shujaat S; Khambay BS; Ju X; Devine JC; McMahon JD; Wales C; Ayoub AF
    Int J Oral Maxillofac Surg; 2014 Jul; 43(7):907-16. PubMed ID: 24583138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FaceWarehouse: a 3D facial expression database for visual computing.
    Cao C; Weng Y; Zhou S; Tong Y; Zhou K
    IEEE Trans Vis Comput Graph; 2014 Mar; 20(3):413-25. PubMed ID: 24434222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Head Pose Estimation on Top of Haar-Like Face Detection: A Study Using the Kinect Sensor.
    Saeed A; Al-Hamadi A; Ghoneim A
    Sensors (Basel); 2015 Aug; 15(9):20945-66. PubMed ID: 26343651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling short-term dynamics and variability for realistic interactive facial animation.
    Stoiber N; Breton G; Seguier R
    IEEE Comput Graph Appl; 2010; 30(4):51-61. PubMed ID: 20650728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.